ADVANCED MATHEMATICS FORM 5 – LOGIC

Share this post on:

            LAWS OF ALGEBRA OF PROPOSITIONS

1.   Idempotent laws

            a) P V P edu.uptymez.com  P

            b) P Λ P edu.uptymez.com P

2.   Commutative

            a) P V Q edu.uptymez.com Q V P

            b) P edu.uptymez.com Q edu.uptymez.com Q Λ P

3.   Associative laws

            a) (P V Q) V R edu.uptymez.com P V (Q V R)

            b) (P Λ Q) Λ R  edu.uptymez.comP Λ (Q Λ R)

4.  Distributive laws

            a) P V (Q Λ R)  edu.uptymez.com (P V Q) Λ (P V R)

            b) P Λ (Q V R) edu.uptymez.com (P Λ Q) V (P Λ R)

5.   Identity laws

            a) P V f edu.uptymez.com P

            b) P Λ t edu.uptymez.comP

            c) P V t edu.uptymez.comt

            d) P Λ f edu.uptymez.comf

6.   Complementary laws

            a) P V ~ P edu.uptymez.comt

            b) P Λ ~ P edu.uptymez.comf

            c) ~ ~P edu.uptymez.comP

            d) ~ T edu.uptymez.comF or t~edu.uptymez.comf

            e) ~ F edu.uptymez.comT or f~edu.uptymez.comt

7.   De-Morgan’s law

            a) ~ (P V Q) edu.uptymez.com ~ P Λ ~ Q

            b) ~ (P Λ Q)  edu.uptymez.com~ P V ~ Q

Examples

            Using the laws of algebra of proposition simplify (P V Q) ~ P

            Solution

                        (P V Q) Λ ~ P edu.uptymez.com (~ P Λ P) V (~ P Λ Q) ……distributive law

                                                edu.uptymez.com f V (~ P Λ Q) ………compliment law         

                                                edu.uptymez.com (~ P Λ Q) ………..identity

Questions

1.  Simplify the following propositions using the laws of algebra of  propositions

            i) ~ (P V Q) V (~P Λ Q)

            ii) (P Λ Q) V   [~ R Λ (Q Λ P)]

2. Show using the laws of algebra of propositions (P Λ Q) V [P Λ (~Q V R)]  edu.uptymez.com P

3.  Construct a truth table for   [(p → ~q) (r → p) r] → ~p

SENTENCE HAVING A GIVEN TRUTH TABLE

Example.1 Find a sentence which has the following truth table

P Q
T T T
T F T
F T T
F F F

 

edu.uptymez.com

Step:   1. Mark lines which are T in last column

            2. Basic conjunction of P and Q

            3. Required sentence is the disjunctions of the above basic conjunction

P Q Basic conjunction
T T T P Q
T F T P ~Q
F T T ~ P Q
F F F  

 

edu.uptymez.com


Required sentence (P
Q) V (P ~ Q) V (~ P
Q)

Example. 2

Find a sentence having the truth table below

P Q R
T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T F
F F F F

 

edu.uptymez.com

        Solution

P Q R Basic conjunction
T T T T P QR
T T F F  
T F T F  
T F F T P ~ Q ~ R
F T T F  
F T F F  
F F T F  
F F F F  

 

edu.uptymez.com

 

Required sentence is (P Q R) V (P ~ Q ~ R)

Example. 3

            Find a sentence having the following truth table and simplify it.

P Q
T T T
T F F
F T T
F F T

 

edu.uptymez.com

SOLUTION

P Q Basic conjunction
T T T P Q
T F F  
F T T ~ P Q
F F T ~ P ~Q

 

edu.uptymez.com

The required sentence is (P Q) V (~ P Q) V (~ P ~ Q)

To simplify;

(P Q) V (~P Q) V (~P ~Q) = (P Q) V [~P (Q V ~Q)…..distributive law

                                                           = (P Q) V   [~ P t] ……compliment law

                                                           = (P Q) V [~ P]  ……..identity

                                                           = (P V ~P) (~P V Q)…….. Distributive

                                                           = t (~P V Q) ………compliment

                                                           = (~P V Q) ………identity

Note

P → Q ≡ ~ P V Q

QUESTIONS

1.  for each of the following truth tables (a), (b) and (c) construct a compound  sentence having that truth table.

P Q R (a) (b) (c)
T T T T T F
T T F F T T
T F T T T T
T F F F T F
F T T F F F
F T F F F F
F F T F F F
F F F F F T

 

edu.uptymez.com

Solution

P Q R (a) (b) (c) Basic conjunction of (a) Basic conjunction of (b) Basic conjunction of ( c)
T T T T T F P Q R P Q R  
T T F F T T   P Q ~ R P Q ~ R
T F T T T T P ~ Q R P ~ Q R P ~ Q R
T F F F T F   P ~Q ~ R  
F T T F F F      
F T F F F F      
F F T F F F      
F F F F F T     ~ P ~ Q ~ R

 

edu.uptymez.com

→The required sentence for (a) is (P Q R) V (P ~ Q R)

→The required sentence for (b) is (P Q R) V (P Q ~R) V (P~Q R) V (P ~Q~ R)

→The required sentence for (c) is (P Q ~R) V (P ~Q R) V (~P ~Q ~R)

2.   i) construct a truth table for ~ (P → Q)

       ii) Write a compound sentence having that truth table (involving ~, , v)

3.   Repeat for the following sentence

      i) ~ P → ~Q           ii) ~ p edu.uptymez.com Q

More
question

1.   Find a compound sentence having components P and Q which is true and only if exactly one of its components P, Q is true.

2.   Find a compound sentence having components P, Q and R which is true only if exactly two of P, Q and R are true.

3.   Give an example of sentence having one component which is always true

4.   Give an example of a compound sentence having one component which is always false

5.   Use laws of algebra of propositions to simplify ~ (p V q) (~ p q)

6.   Show that p edu.uptymez.com q and ~ p v q are logically equivalent

7.    If Apq edu.uptymez.com p q and Npedu.uptymez.com ~ p write the following without ~ and A

            i) ~ (p q)

           ii)~ (p ~q)

            iii) ~ (~ p q)

            iv) ~ (p ~ q)

QUESTIONS

1.  Rewrite the following without using the conditional

            i) If it is cold, he wears a hat

            ii) If productivity increases, then wages rise

2. Determine the truth value of the following

            i) 2 + 2 = 4 if and only if 3 + 6 = 9         

            ii) 2 + 2 = 4 if and only if 5 + 1 = 2        

      iii)    1 + 1 = 2 if and only if 3 + 2 = 8       

      iv) 1 + 2 = 5 if and only if 3 + 1 = 4         

3.  Prove by truth table

            i) ~ (p edu.uptymez.com q) ≡ p edu.uptymez.com ~q

ii) ~ (p edu.uptymez.com q) ≡ ~ p edu.uptymez.com q

4.  Prove the conditional distributes over conjunction i.e.

            [p → (q r)] ≡ (p → q) (p → r)

5.  Let p denote ” it is cold” and let q denote ” it rains “. Write the following statement in symbolic form

            i) It rains only if it is cold.                        

            ii) A necessary condition for it to be cold is that it rains.

            iii) A sufficient condition for it to be cold is that it rains      

            iv) It never rains when it is cold.

6.   a) Write the inverse of the converse of the conditional

            ” If a quadrilateral is a square then it is a rectangle”

            b) Write the inverse of the converse of the contra positive of

            “If the diagonals of the rhombus are perpendicular then it is a square”

Share this post on: