SOLUTION
1. a) A = B =
A + B
+
= =
∴ A + B =
For singular matrix, = 0
= 2 (8) – k (k) = 0
16 = k2 = 0
16 = k2
=
4 = k
k = 4
c) B =
= 2 (-1) – 4 (1)
= -2 – 4
= -6
d) By using inverse method required to solve for x and y
x + 2y = 10
2x – y = 5
=
A =
= 1 (-1) – 2 (2) = -1 – 4 – –5
A-1 = 1/
A-1 = 1/-5
=
2. 3x – y + 2z = 2
x – 5y + 2z = 6
2x + 3y + z = 0
i) By determinant
=
= 3
– –1
+ 2
= 3 (5 – 6) – -1 (1 – 4) + 2 (3 – 10)
= 3 (–1) + 1 (-3) + 2 (–7)
= -3 + -3 + -4 = -20
B =
= 2
– 1
+ 2
= 2 (5 – 6) + 1 (6 – 0) + 2 (18 – 0)
= 2 (–1) + 1 (6) + 2 (18)
= -2 + 6 + 36 = 40
C =
= 3
– 2
+ 2
= 3 (6 – 0) – 2 (1 – 4) + 2 (0 – 12)
= 3 (6) – 2 (–3) + 2 (–12)
= 18 – 6 + -24 = -12
D =
= 3 (0 – 18) + 1 (0 – 12) + 2 (3 – 10)
= 3 (–18) + -1 (–12) + 2 (–7)
ii) By inverse
=
= 3
– 1 –1
+ 2
= 3 (5 – 6) + 1 (1 – 4) + 2 (3 – 10)
= 3 (-1) + 1 (-3) + 2 (-7)
= -3 + –3 + -14 = -20
A =
Cof 3: + 1 cof -1: 1
= + 1 (5 – 6) = – 1 (1 – 4)
= -1 = 3
Cof 2: + 1 cof: – 1
= + 1 (3 – 10) = -1 (5 – 6)
= -7 = 1
Cof 2: + 1 cof2: -1
= + 1 (3 – 4) = -1 (9 – 2)
= -1 = -7
Cof 4 + 1 cof 3: -1
= + 1 (-2 – 10) = -1 (6 – 2)
= -12 = -4
Cof 1: + 1
= + 1 (15 + 1)
= 16
Matrix of the Co factors
C =
Adj A =
Inverse A
=
=
3. a) 2x + y = 8
4x – y = 10
i) Determinant
= 2 (-1) – 4 (1)
= -2 – 4 = -6
=
= 8 (-1) – 10 (1)
= -8 – 10 = -18
=
= 2 (10) – 4(8)
= 20 – 32 = -12
X =
ii) By inverse
A =
= 2 (–1) – 4 (1)
= -12 – 4 = -6
∴ =
b) If A=, B =
and C =
, Show that A + B – 2C is singular
+
– 2
= –
= –
=
=
c) x + y + z = 6
3x – 2y – z = -1
2x + 4y + 3z = 19
i) Determinant
=
= 1
– 1
+ 1
= 1 (-6 + 4) – 1 (9 + 2) + 1 (12 + 4)
= -2 – 11 + 16 = 3
B =
= 6
– 1
+ 1
= 6 (-6 + 4) – 1 (-3 + 19) + 1 (-4 + 38)
= 6 (-2) – 1 (16) + 1 (34)
= -12 – 16 + 34 = 6
C =
= 1
– 6
+ 1
= 1 (-3 + 19) – 6 (9 + 2) + 1 (57 + 2)
= 16 – 6 (11) + 1 (59)
= 16 – 66 + 59 = 9
D =
= 1
– 1
+ 6
= 1 (-38 + 9) – 1 (57 + 2) + 6 (12 + 9)
= 1 (-34) – 1 (59) + 6 (16)
= -34 – 59 + 96 = 3
=
ii) By inverse
A =
=
= 1
– 1
+ 1
= 1 (-6 + 4) – 1 (9 + 2) + 1 (12 + 4)
= 1 (-2) – 1 (11) + 1 (16)
= -2 – 11 + 16 = 3
Cof 1: + 1 cof1: + 1
= + 1 (-6 + 4) = -1 (9 + 2)
= -2 = -11
Cof1: + 1 cof 3: -1
= + 1 (12 + 4) = -1 (3 – 4)
= 16 = -1
Cof2: + 1 cof1: –
= + 1 (3 – 2) = – 1 (4 – 2)
= 1 = -2
Cof2: + 1 cof 4: – 1
= + 1 (-1 + 2) = -1 (-1 – 3)
= + 1 = 4
Cof 3: + 1
= + 1 (-2 – 3)
= -5
Matrix cofactors
A =
Adj A =
A-1 = 1/ Adj A
A-1 = 1/3
∴
7. a) A = B =
Calculate i) AB
x
=
=
=
ii) BA
A = B =
=
=
=
b) Find the value of x, y, w and z
3 =
+
=
3x – x = 4
2x = 4
2 2
x = 2
3y – y = 6 + 2
2y = 6 + 2
2y =8
y = 4
3w = 2w + 3
3w – 2w = 3
w = 3
3z = -1 + z + w
3z – z = -1 + 3
2z = 2
2 2
z = 1
∴ x = 2, y = 4, z = 1, w = 3
5. A transformation is given by the matrix M where M =
Find the (a) image of (-2, 5) under M (b) Inverse of M
b) M =
= 4 (3) – 2
= 12 – 2 = 10
M-1 = 1/10
M-1 =
6. a) If T is linear transformation such that T = and T (x, y)
(3y, 5x)
Find T hence evaluate T (1, 2)
Solution
=
=
ax + by = 3y
a =0
b = 3
cx + dy = 5x
c = 5
d = 0
T =
T (x, y) = (3y, 5x)
T (1, 2) = (6, 5)
OR
= =