ADVANCED MATHEMATICS FORM 6 – NUMERICAL METHOD

Share this post on:

Introduction

Numerical methods can be used to find roots of a function

→We find roots of a function by;

            1. Direct method

           2. Iterative method

ERROR

An error can be defined as the deviation from accuracy or correctness

Error    edu.uptymez.com

Where;

X = is the exact value of a number

X0 = is an approximate value of a number

Example

If X0 = 3.14 and x= edu.uptymez.com then

.edu.uptymez.com

     = edu.uptymez.com

=0.001592654

TYPES OF ERROR

A)   Systematic error

This is a predictable error or constant caused by imperfect calibration of measurements instruments or something is wrong from the measuring instrument

B)   Random error

Unpredictable error caused either by weather or anything else.

Sources of errors

1. Experimentation error/modeling error

2. Truncation error/terminating error

E.g. edu.uptymez.com

You can see that the series is terminated at power of 3

3. Rounding off numbers

4. Mistakes and blunder

ABSOLUTE AND RELATIVE ERROR

Absolute error

Is the difference between the measured value of a quantity X0 and its value

Absolute erroredu.uptymez.com

Relative error

edu.uptymez.com

i.e. Relative error = edu.uptymez.com

A relative error gives an indication of how good measurement is relative to the size measurement is relative to the size of the thing that measured.

Example

edu.uptymez.com

i)   Absolute error

ii)  Relative error

iii)Percentage error

Solution

i. Absolute error = /X – X0/

edu.uptymez.com
=  X – X0

∆x = 0.001592654

ii.  Relative error edu.uptymez.com

                   =  edu.uptymez.com

=  0.000050696(9dp)

iii. Percentage error edu.uptymez.com

          = 0.000050696 x 100%

= 5.0696 x 10-2%

Roots by iterative methods

Iterative method is used to find a root of function by approximations repeatedly.

If f(x1), f(x2) < 0 the root lies between X1and X2

Newton’s Raphson formula

The formula is based on the tangent lines drawn to the curves through x-axis

Consider the graph below

Suppose f(x) = 0 has a root edu.uptymez.com that x is an approximation for edu.uptymez.com

edu.uptymez.com

Choosing a point which is very close to  let be X1

X1edu.uptymez.com

edu.uptymez.com

A line AB is drawn tangent to the curve at a point A where A(X1, f(X1))

X2 is the point which is very near to edu.uptymez.com1

edu.uptymez.com

This slope is equal to the tangent of the curve at X=X1

i.e. edu.uptymez.com

But At B    f(X2) = 0

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

X3 will be the best approximation

edu.uptymez.com

In general N-R formula can be written as

edu.uptymez.com 


Example

Show that the equation X3 – X2 + 10x – 2 = 0 has a root between x = 0 and x = 1 and find the approximation for this root by carrying out 3 iterations

Solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Application of N-R Formula

1.   Find approximation for roots of numbers suppose we want to approximate edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com


edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

B y using 2 iteration only and starting with an initial value 2, find the square root of 5 correct to four decimal place

Solution

Let x=edu.uptymez.com

   X2=5

X2 – 5 = 0

Let f(x) = x2 – 5 by N.R formula

f'(x)= 2x

Given X1=2

Then

First iteration

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

Apply the N.R formula to establish the root of a number A


Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
 
edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Finding approximations for reciprocals of numbers
Suppose we want to approximate edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
 
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
 
edu.uptymez.com
edu.uptymez.com
 
edu.uptymez.com
 
edu.uptymez.com
 
edu.uptymez.com
 
edu.uptymez.com

Example

Use N.R formula to find the inverse of 7 to 4, and perform 3 iteration only starting with Xo=0.1

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
 

edu.uptymez.com
edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Share this post on: