Form 6 Chemistry – PHYSICAL CHEMISTRY 1.3- ELECTROCHEMISTRY

Share this post on:

EFFECTS OF CONCENTRATION AND TEMPERATURE ON CELL POTENTIALS

We have been considering electrode potential under standard conditions of molar solution, pressure of 1 atom and 298K. When the conditions are altered he values of electrode potential changes thus we have to define the potential of the cell under non-standard conditions.

The Nernst equation shows the relationship between emf of the cell at standard conditions and emf under non-standard conditions.

Where; edu.uptymez.com – emf of a cell at any conditions

edu.uptymez.com – emf of a cell under standard conditions

R – Universal gas constant (8.314 Jmol-1K-1)

n – Number of moles electrons being transferred

F – Faraday’s constant (96500c)

At standard temperature (298K)

edu.uptymez.com

edu.uptymez.com

OR

edu.uptymez.com

The above equation can be applied to half reactions and overall reactions

NOTE
Always write a balanced cell reaction to obtain ‘n’ and position of ions, either reactants or products together with their stoichiometry

Example

Calculate the emf of the given cell at standard temperature.

edu.uptymez.com

Given

edu.uptymez.com

edu.uptymez.com

Alternative Solution 1

edu.uptymez.com

= -0.13 – (-2.56)

edu.uptymez.com= 2.43v

Alternative Solution 2

edu.uptymez.com

edu.uptymez.com

n = 6

Now;
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example 2

Calculate the emf of Daniel cell at edu.uptymez.com using 2M ZnSO4 solutions and 0.5M CuSO4 solution   edu.uptymez.com

Alternative Solution 1

edu.uptymez.com

edu.uptymez.com
= 0.34 – (-0.76)

edu.uptymez.com = 1.1v

Alternative Solution 2

Half reactions

edu.uptymez.com(Oxidation)

edu.uptymez.com (Reduction)

edu.uptymez.com

Here n = 2

Now using

edu.uptymez.com

edu.uptymez.com

Ecell =1.08v

Example 3

Calculate the emf for the following voltaic cells

a)      edu.uptymez.com

(b)Zn/Zn2+(10-3M)//Ag+(10-3M)/Ag

c)      edu.uptymez.com

Given

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Alternative Solution 1

edu.uptymez.com

edu.uptymez.com

n = 2

Now; edu.uptymez.com

= 0.8 – (-0.76)

edu.uptymez.com= 1.56v

Alternative Solution 2

From edu.uptymez.com

edu.uptymez.com

edu.uptymez.com= 1.47v

d)  Solution

Alternative Solution 1

edu.uptymez.com

= 0.8 – (0.77)

edu.uptymez.com= 0.03v

Alternative Solution 2

Half reactions

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

n = 1

From edu.uptymez.com

edu.uptymez.com

Ecell =0.0122v

c)  Solution

edu.uptymez.com

= -0.14 – (-2.56)

edu.uptymez.com= 2.42v

Half reactions

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

2Al + 3Sn2+ ® 2Al3+ + 3Sn

n = 6

Now; edu.uptymez.com

edu.uptymez.com

Ecell =2.418v

EQUILIBRIUM CONSTANT OF GALVANIC CELL
Consider to what happens to a Daniel’s cell if we use it to do some electrical work i.e. it can be connected to a small electric motor. After sometimes the motor will stop. The cell will run down. When this happensedu.uptymez.com and there is no overall transfer of electricity from one half cells to the other. When there is no overall change taking place in a chemical reaction the equilibrium has been established. At equilibrium, electron density of both electrodes is equal and there is no transfer of electricity between the two half cells.

Applying the Nernst equation to a Daniel’s cell

edu.uptymez.com

edu.uptymez.com

Since the reaction is at equilibrium, the ratio edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

KC = 1.67 x 1037

The large value tells  us that, the equilibrium lies almost entirely in favour of copper metal and zinc ions.

Generally, the cell at equilibrium at standard temperature is given by the following expression;

edu.uptymez.com

Example

Calculate KC for the following voltaic cell

edu.uptymez.com

Given edu.uptymez.com

edu.uptymez.com

Cell reaction

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

From

edu.uptymez.com

= -0.12 – (-0.46)

= 0.34v

Now, edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

KC = 3.20 x 1013

Example
What concentration of edu.uptymez.com will emf of the cell be zero at edu.uptymez.com if concentration of edu.uptymez.com is edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Solution

edu.uptymez.com

Cu + 2Ag+ ® Cu2+ + 2Ag

n = 2

From
edu.uptymez.com

When edu.uptymez.com

edu.uptymez.com

Now,

edu.uptymez.com

= 0.8 – (0.338)

edu.uptymez.com  = 0.462v

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

3. Given edu.uptymez.com and    edu.uptymez.com. Calculate the equilibrium constant for the reaction  edu.uptymez.com State the significance of equilibrium constant.

Solution

edu.uptymez.com

edu.uptymez.com = 0

edu.uptymez.com edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Cu + 2Cu2+ ® 2Cu+

n = 2

Using edu.uptymez.com

= 0.53 – 0.34

edu.uptymez.com = -0.187v

edu.uptymez.com

edu.uptymez.com = -6.3282

KC = 4.69 x 10-7

Question
(a) Given the edu.uptymez.com which is thermodynamically feasible, the reduction of Cu2+ by Ag or reduction of Ag+ by Copper.

(b) Calculate the standard emf of the cell and the equilibrium constant.

CONCENTRATION CELL

A half concentration cell which consists of two half cells with identified electrode that differs in ion concentration because the electrodes are identified.  edu.uptymez.com for oxidation is numerically equal and opposite in sign toedu.uptymez.com for reduction. As a result edu.uptymez.com

The reaction in the cell takes place in order to reduce the difference in concentration until (when the two concentrations are equal. The higher concentration is reduced and the lower concentration is increased.)

edu.uptymez.com

Oxidation                                                                 reduction

Cu ® Cu2+ + 2e–                                                     Cu2+ + 2e ® Cu

Electrochemical cell: Anode (-)

Cathode (+)

Electrolytic cell: Anode (+)

Cathode (-)

Question

Calculate the emf of the following concentration cell edu.uptymez.com

Solution

edu.uptymez.com

Using Nernst equation

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com= 0.0591v

3. MEASUREMENT OF pH OF A SOLUTION USING STANDARD ELECTRODE POTENTIAL

pH is the degree of alkalinity, or acidity of a substance. It is obtained by using the hydrogen ion concentration pH = –edu.uptymez.com

The pH of a solution is determined by using any electrode provided its standard electrode potential is known and the concentration of ions in that electrode should be 1M. This will be one of the half cells another half cell is made up hydrogen electrode dipped into the solution whose pH is to be determined

edu.uptymez.com

Reaction:

H2(g) +edu.uptymez.com 2 H+(aq) +2e                       E 0 = 0.00v

2Ag+ (aq)+ 2e
edu.uptymez.com Ag(s)                   E = 0.8v

H2(g) + 2Ag+(aq)edu.uptymez.com 2H+(aq0+ Ag(s)        E0   = 0.8V

Applying Nernst equation at standard temperature

E cell = edu.uptymez.com cell –  edu.uptymez.com

= 0.8 – edu.uptymez.com

= 0.8 + edu.uptymez.com2(-edu.uptymez.com

E cell = 0.8 + 0.0591edu.uptymez.com

pH= edu.uptymez.com  = edu.uptymez.com

Question:    Calculate the edu.uptymez.com of the following cell and hydrogen ion concentration.

Zn/Zn2+ // H+ /H2, pt

Zn2+ /Zn = -0.76v

E cell = 0.115v

Solution

edu.uptymez.com= 0 – (-0.760)

edu.uptymez.com = 0.76v

edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

Zn(s)   →  Zedu.uptymez.com(aq)  +  2edu.uptymez.com

2H+(aq)  +  2edu.uptymez.com  →  edu.uptymez.com(g)

Zn(s) + 2H+(aq)edu.uptymez.com  Zn2+(aq)+ edu.uptymez.com(g)

edu.uptymez.com = edu.uptymez.com – edu.uptymez.com edu.uptymez.com

edu.uptymez.com = edu.uptymez.com + edu.uptymez.com x 2edu.uptymez.com

0.115 = 0.76 + 0.0591edu.uptymez.com

-0.0591edu.uptymez.com) = 0.645

edu.uptymez.com = 10.913

edu.uptymez.com = 10.91

            pH DEPENDENCE OF REDOX POTENTIALS

Whenever a redox half equation involves H+ or OH ion, its redox potential depends on the edu.uptymez.com of the solution.

Example

edu.uptymez.com (aq)+ edu.uptymez.com (aq)+ edu.uptymez.com edu.uptymez.com edu.uptymez.com (aq)+ 4edu.uptymez.comO(l)      E = 1.52V

The Nernst equation at standard temperature is

edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

Under standard conditions, all effective concentrations are 1M

edu.uptymez.com = 1.52 – edu.uptymez.com

edu.uptymez.com = 1.52 – 0

edu.uptymez.com = 1.52v

Suppose the edu.uptymez.com is changed from O to 5 i.e. the concentration changes from 1M to  1 x 10-5 M

edu.uptymez.com = 1.52 – edu.uptymez.com)-8

edu.uptymez.com = 1.52 + edu.uptymez.com

edu.uptymez.com = 1.04 v

Due to change of edu.uptymez.com from O to 5, the electrode potential decreases from 1.52 to 1.047v.
That means, permanganate (vii) becomes a less powerful oxidizing agent when PH increases

Question1.
Calculate edu.uptymez.com of the following cell;-

Zn/Zn2+ //H+ /H2, pt

Zn2+ /Zn = -0.76v

E cell = 0.115v

Question2.
If E for Zn /Zn2+//Cn2+/Cn is 1.1v

i.Calculate the E cell when concentration of Zn2+ is 2M and Cu2+ is 0.5M

ii.What is E cell when concentration of Zn is 0.4M, edu.uptymez.com = 0.1M

Question3.
Write down the expression for the cell emf for the following reaction;

edu.uptymez.com (aq)+ edu.uptymez.com (aq)+ edu.uptymez.com edu.uptymez.com edu.uptymez.com (aq)+ 4H2O(l)

Briefly explain why the oxidizing power of permanganate (Vii) ion is quite sensitive to the concentration of H+ in the solution.

Share this post on: