Form 6 Chemistry – PHYSICAL CHEMISTRY 1.4-CHEMICAL EQUILIBRIUM

Share this post on:


UNITS OF EQUILIBRIUM CONSTANT

The units of equilibrium constants, K c and K p depends on the number of moles of reactants and products involved in the reaction

1. N2 (g)   + O2 (g)  edu.uptymez.com    2NO (g)

     K p edu.uptymez.com    

     K p =  edu.uptymez.com = Unit less

2. N2 (g) + 3H2(g)   edu.uptymez.com   2NH3 (g)

       K p =  edu.uptymez.com

       K p =edu.uptymez.com       

       K p = edu.uptymez.com

       K c = edu.uptymez.com

           = edu.uptymez.com

      K c = edu.uptymez.com

A large value of K p or K c means the equilibrium lies on the sides of the product and a small value of K c and K p means equilibrium lies on the sides of the reactants thus the equilibrium constant shows to what extent the reactant are converted to the product.

        If K c is greater than 103, products pre- dominate over reactants equilibrium therefore the reaction proceeds nearly to completion.

        If K c is less than 10-3, reactants dominate over products, the reaction proceeds to very small extent.

        If K c is in the range of 10-3 and 103, appreciable concentrations of both reactants and products are present.

SOLIDS AND PURE LIQUIDS IN EQUILIBRIUM EXPRESSION

The concentration of a solid or pure liquid (but not a solution) is proportional to its density. Therefore, their densities are not affected by any gas pressure hence remain constant; hence their concentration never appear in the equilibrium expression.


Example

1. What is the equilibrium expression for the following reactions?

     i)   3Fe (g)   + 4H2O (g)  edu.uptymez.com  Fe3O4 + 4H2 (g)

      Solution

       K c =edu.uptymez.com          OR     K p =  edu.uptymez.com

      ii)  PCl5
(g)  edu.uptymez.com  PCl3 (g) + Cl 2
(g)

            K cedu.uptymez.com

           K p = edu.uptymez.com

     iii)  HCl (g) + Li H(S)  edu.uptymez.com  H2 (g)   +LiCl(s)

         K c = edu.uptymez.com 

         K p = edu.uptymez.com

     iv)  Cu (OH) 2(s)  edu.uptymez.com Cu2+ (aq) + 2OH (aq)

                 K c = [Cu 2+]   [OH ] 2

     v)   CaCO3(s) edu.uptymez.com CaO(s) + CO 2(g)

                    K c = [CO2]

     vi)    [Cu(NH3)4]2+(aq)   edu.uptymez.com   Cu2+(aq) + 4NH3(aq)

                     edu.uptymez.com

2. The equilibrium constant for the synthesis of HCl, HBr and HI are given below;

          H2 (g) +Cl2 (g)   edu.uptymez.com  2HCl (g) KC =1017

          H2 (g) + Br2 (g)    edu.uptymez.com   2HBr (g)   KC=109

          H2 (g) +I 2(g)     edu.uptymez.com  2HI (g)    KC=10

3.   a) What do the value of Kc tell you about the extent of each reaction?

      b) Which of these reactions would you regard as complete conversion? Why?

Answers

a) For all the 3 reactions, the equilibrium lies on the product side (i.e. RHS) and the extent of formation of HCl is greater than HBr which in turn is greater than HI.

b) For the 1st and 2nd reaction, it can be regarded as complete conversion because products pre-dominates over reactants at equilibrium.

Characteristics of equilibrium constant

1. Equilibrium constant is applicable only when the concentrations of reactants and products have attained their equilibrium.

2. The value of equilibrium concentration is independent of the original concentration of reactants.

3. The equilibrium constant has a definite value for every reaction at a particular temperature.

4. For a reversible reaction the equilibrium constant for the forwarded reaction is the inverse of the equilibrium constant for the backward reaction.

5. The value of equilibrium constant tells the extent to which reaction proceeds in the forward or reverse direction.

6. Equilibrium constant is independent of the presence of catalyst. This is because the catalyst affects the rate of forward and backward reaction equally.


Relationship between K c and K p for a gaseous equilibrium

For any given reaction, Kc or Kp is a function of the reaction itself and temperature.

Consider the following gaseous equilibrium

    aA (g) + bB(g)  edu.uptymez.com   cC (g) + dD (g)

       K c edu.uptymez.com   —————— (1)

       K p = edu.uptymez.com ————– (2)

From PV= nRT

          [X] = edu.uptymez.com = edu.uptymez.com

I.e. [A] =   edu.uptymez.com  , [B] = edu.uptymez.com

Substitute these concentration in terms of partial pressures in equation (1)

            K c = edu.uptymez.com

      = edu.uptymez.com . edu.uptymez.com

           = K p edu.uptymez.com

             = K p edu.uptymez.com

But;   (c+d) = total number of moles in the products.

         (a +b) = total number of moles in the reactants.

         (c +d) – (a + b) = The difference between moles of products and reactants

So,    (c +d)-(a + b) = Δn


edu.uptymez.com

Thus, the numerical value of K p and K c are equal when there is the same number of moles on products and reactants side numerically.
Example:

1. What is the relationship between K p and K c in the following reactions?

   2H2 (g) + O2 (g)  edu.uptymez.com 2H2 O (g)

From; K p = K c (RT) Δn

         = K c (RT) (2- (1+2))

        K p = Kc (RT)-1

ii) Derive the relationship between K p and k c for the particular reaction.

         2H2 (g) + O2 (g)    edu.uptymez.com 2H 2O (g)

        K c = edu.uptymez.com  …………… (1)

        K p = edu.uptymez.com  ……….. (2)

From  PV = nRT

             P = edu.uptymez.comRT

             P = [X] RT

edu.uptymez.com   edu.uptymez.com= [H 2] RT ,   edu.uptymez.com= [ edu.uptymez.com] RT………etc

Substitute the partial pressure in equation (2)

         edu.uptymez.com

         K p =edu.uptymez.com . edu.uptymez.com

          K p = K c (RT) (2-(1+2))

                 K p = K c (RT)-1

2. a) Derive the relationship between K p and K c for ammonic synthesis.

        N2 (g) + 3H2 (g) edu.uptymez.com 2NH3 (g)

         K c = edu.uptymez.com ………… (1)

          K P = edu.uptymez.com …….. (2)

From PV = nRT

           P = edu.uptymez.comRT

           P = [X] RT

edu.uptymez.com edu.uptymez.com = [edu.uptymez.com] RT, edu.uptymez.com= [edu.uptymez.com] RT,  edu.uptymez.com = [edu.uptymez.com] RT

Substitute the partial pressure in equation (2)

       K p = edu.uptymez.com

       K P =edu.uptymez.com edu.uptymez.com

        K p = KC x edu.uptymez.com

         K p = K C.(RT)-2

b) If Kc = 0.105 mol-2dm6 at 4720C. Calculate K p

          [R=8.31 dm3 KPa mol-1 K-1]

Solution:

K p = K c x (RT)-2

     = 0.105 x (8.31x 745)-2

     = 0.105 x (6190.95)-2

     = 2.7395x 10-9(KPa)-2

DETERMINATION OF EQUILIBRIUM CONSTANT

        Consider the reaction:-

           CH3CH2OH + CH3COOH  edu.uptymez.com CH 3COOCH2 CH3 + H2O

  edu.uptymez.com                                               
edu.uptymez.com

Example:

1. An equilibrium system for the reaction between H2  and I2, to form HI at 670K in 5l flask contains 0.4 moles of H2, 0.4 moles of  I2 and 2.4 moles of HI. Calculate the equilibrium constant K c.

    H2 (g) +I2 (g)  edu.uptymez.com 2HI (g)

       K c edu.uptymez.com

     [HI] =   edu.uptymez.com= 0.48 edu.uptymez.com

      [H2] = edu.uptymez.com= 0.08 edu.uptymez.com

       [I2] =edu.uptymez.com  = 0.08 edu.uptymez.com

    edu.uptymez.comK c =   edu.uptymez.com

           K c = 36

2. A mixture of 1.0 x10-3 moldm-3 H 2 and 2.0 x 10-3 moldm-3 I2 are placed into a container at 4500C. After equilibrium was reached the HI concentration was found to be 1.87 x 10edu.uptymez.com. Calculate the equilibrium constant.

                      H2 (g) + I2 (g) edu.uptymez.com   2HI (g)

At   t=0              a        b                   0

Equilibrium:  a-x       b-x               2x 

edu.uptymez.com2x = 1.87 x 10-3

      X= 9.35 x 10-4moldm -3

           a=1.0 x 10-3

     a-x = 1.0 x 10-3 – 9.35x 10-4

            = 6.5 x 10-5moldm-3

       b = 2.0 x 10-3

     b -x=2.0edu.uptymez.com10-3– 9.35edu.uptymez.com10-4

     =1.065edu.uptymez.com10-3moldm-3

          K c = edu.uptymez.com

      = edu.uptymez.com

               K c = 50.51

3. a) It was found that if 1 mole of acetic acid and half a mole of ethanol react to equilibrium at certain temperature, 0.422 moles of ethyl acetate are produced. Show that the equilibrium constant for this reaction is about 4.

                   edu.uptymez.com

Start: –                  1mol               0.5mol                     0                                  0

Equilibrium:       1-0.422          0.5-0.422               0.422                                        x

                              0.578               0.078                   0.422                         0.422

Equilibrium             edu.uptymez.com           edu.uptymez.com            edu.uptymez.com                     edu.uptymez.com          

Concentration   

             K c = edu.uptymez.com 

             = edu.uptymez.com          

                  K c = 3.95

              K c ≈ 4   shown

b) From the same reaction above, 3moles of acetic acid and 5 moles of ethanol reacted. Find the amounts which will be present equilibrium.

                             CH3COOH (l) + C2H5OH (l)     edu.uptymez.com    CH3COOCH2CH3 (I) + H2O (I)


t= 0                              3                        5                                        0                                0

t = t                            (3-x)             (5-x)                                       x                              x

Equilibrium

Concentration              edu.uptymez.com                edu.uptymez.com                                       edu.uptymez.com                             edu.uptymez.com

        K c =  edu.uptymez.com 

        4 =  edu.uptymez.com

       4 = edu.uptymez.com

       4 =  edu.uptymez.com        

       X2   = 60 – 32x + 4x2

         3x2 – 32x + 60 = 0

      X = 8.24   or   x = 2.43

Logically;   x = 2.43

At equilibrium CH3COOH    edu.uptymez.com  3 – 2.43 = 0.57 moles

                           C2 H5 OH     edu.uptymez.com  5 – 2.43 = 2.57 moles

4 .For the reaction;

CO2 (g) + H2 (g)    edu.uptymez.com  CO (g) +   H2 O (g)

The value of K c at 5520C is 0.137. If 5moles of CO 2, 5moles of H2, 1 mole of CO and 1 mole of H2 O are initially present, what is the actual concentration of CO2, H2, CO and H2O at equilibrium?

                           CO2 (g)      +    H2 (g)   edu.uptymez.com    CO2 (g) +   H2 O (g)

At start;                      5                     1                       1               1

At equilibrium       5-x                   1-x                   1x              1x

       K c   = edu.uptymez.com

    0.137 = edu.uptymez.com

    0.137 = edu.uptymez.com

   3.425 – 1.37x + 0.137x2   = X2

  3.425 – 1.37x + 0.137 x2–x2 =0

  3.425 -1.37x – 0.863x2 =0

  x =edu.uptymez.com

 x =   edu.uptymez.com 

   x =edu.uptymez.com   =     x =1.349

COMBINING EQUILIBRIUM REACTIONS

1. Reversing an equilibrium reaction

Consider the reaction

PCl5 (g) edu.uptymez.com PCl3 (g) +Cl2 (g)………………. (i)

K c (i) =edu.uptymez.com …………………….. (i)

Reversing the reaction;

         PCl3 (g) + Cl2 (g)  edu.uptymez.com    PCl5 (g)

K c (ii) =  edu.uptymez.com ………………. (2)

When reaction equation is reversed, the equilibrium constant is reciprocated i.e. from equation (1)   and (2)

     K c(ii) =edu.uptymez.com

2.      Multiplying an equilibrium reaction by a number

When the stoichiometric coefficient of a balanced equation is multiplied by the same factor, the equilibrium constant for the new equation is old equilibrium constant raised to the power of the multiplied factor.

PCl5 (g)   edu.uptymez.com     PCl3 (g) + Cl (g)

K c (i) edu.uptymez.com

If the equation (i) is multiplied by ½

edu.uptymez.comPCl5 (g) edu.uptymez.com  edu.uptymez.comPCl3 (g) + edu.uptymez.comCl2 (g)

         edu.uptymez.com

 edu.uptymez.com

Note; if an equilibrium reaction is multiplied byedu.uptymez.com     then;

   K c(ii ) =   edu.uptymez.com     

   K c(ii)   =edu.uptymez.com

Example: The K c for the reaction below is edu.uptymez.com

S (s) +edu.uptymez.com O2 (g)  edu.uptymez.com SO3 (g); what is the K c for SO3 Equilibriate with S + O2

2 SO3 (g)   edu.uptymez.com  2S(s) + 302(g)

S (s) +edu.uptymez.com  O2 (g)  edu.uptymez.com SO3 (g)………………. (I)

2SO3 (g)     edu.uptymez.com    2S(s) + 302(g)…………………. (2)

Equation (2) has been reversed and multiplied by 2

When reversed

K c (i) edu.uptymez.com     = 1.1×1065

   K c (ii) =     edu.uptymez.com

K c (ii) =     edu.uptymez.com

K c (ii) = 9.09 x 10-66

When multiplied

K c (ii) = edu.uptymez.com

3. Adding the equilibrium. 

The equilibrium constant for the reaction

i) 2HCl(g)   edu.uptymez.com Cl2(g) +H2(g)

   K c (i) = 4.17x 10-34   (At 25 0 c)

The equilibrium constant for reaction

ii)  I2 (g) + Cl2 (g)   edu.uptymez.com  2ICl (g)

       K c (ii) = 2.1 x 105 (At 25 0c)

Calculate the equilibrium constant for the reaction

iii) 2HCl (g) + I2 (g)  edu.uptymez.com    2ICl (g) + H2 (g)

K c (iii) =?

K c (i) = edu.uptymez.com

K c (ii) =  edu.uptymez.com

K c (iii) =  edu.uptymez.com

When equation (i) + equation (ii) = equation (iii), Hence

K c (iii) = K c (ii) x K c (i)

           = (2.1 x 105) x (4.17 x 10-34)

K c (iii) = 8.757 x 10-29
(mol dm-3)1/2

Question 1:

The following are reactions which occurs at 3500K

i) 2H2 (g) +O2 (g)  edu.uptymez.com  2H2O (g)    K p (i) = 26.4 atm-1

ii) 2CO (g) +O2 (g)  edu.uptymez.com 2CO2 (g) K p (ii) = 0.376 atm-1

Calculate  equilibrium constant for reaction

CO 2 (g) + H 2 (g)     edu.uptymez.com  CO (g) + H2O (g)

K p (iii) =?

Question 2

.Determine the Equilibrium constant for reaction;

edu.uptymez.com  M2(g) +edu.uptymez.comO2 (g) +edu.uptymez.comBr2 (g) edu.uptymez.com NOBr (g)

Given that:-

i/ 2NO (g)  edu.uptymez.com N2(g) + O2(g)   K c = 2.4 x edu.uptymez.com

ii/ NO (g) + edu.uptymez.com Br2
(g) edu.uptymez.com NOBr     K c = 1.4

Answers

i) 2H2 (g) + O2
(g)   edu.uptymez.com  2H2 O (g)                                                                K p (i) =26.4atm-1

ii) 2CO (g) + O2 (g)   edu.uptymez.com   2CO2
(g)                                                                K p (ii) =0.376 atm-1

iii) CO2 (g) + H2 (g)      edu.uptymez.com   CO (g)   + H2O (g)                                        K p (iii) =?

K p (i)edu.uptymez.com

K p (ii) = edu.uptymez.com

K p (iii) =  edu.uptymez.com

Reverse (ii), multiply (i) and (ii) by ½

i) edu.uptymez.com (2H2 (g) +O2 (g)   edu.uptymez.com   H2O (g))                                    K p (i) =   edu.uptymez.com

i) H2 (g) + edu.uptymez.comO 2      edu.uptymez.com      H2O (g)                          K p(i) = 5.138 atm-1

Reverse (ii)

ii) 2CO2 (g)  edu.uptymez.com 2CO (g) +O2 (g)                                     K p (ii) = edu.uptymez.com   

                                                                                      = 2.6595 atm-1

Now multiply by (ii) by ½

edu.uptymez.com (2CO2 (g)  edu.uptymez.com  2CO (g) +02(g))                                K p (ii) =edu.uptymez.com       

ii) CO2 (g) edu.uptymez.com CO (g) +   edu.uptymez.com O2 (g)                                             =1.63079

Add equation (i) + (ii), then

K p (iii) = K p (i) x K p (ii)

              = 5.138 x 1.63079

              =8.379 atm-1

2. i) 2NO(g)    edu.uptymez.com      N2(g)     +  O2(g)                                                             K c(i) = 2.4 x 1030

   ii) NO (g) + edu.uptymez.comBr (g)     edu.uptymez.com      NOBr (g)                                                           K c (ii) =14

   iii)  edu.uptymez.comN2 (g) +   edu.uptymez.comO2 (g) +  edu.uptymez.com Br (g)    edu.uptymez.com    NOBr(g)                           K c (iii) =?

Reverse ……. (i)

O2 (g)   + N2 (g)  edu.uptymez.com  2NO (g)                                                                       K c (i) edu.uptymez.com        

                                                                                                                 =4.167 x 10-31

Now multiply (i) by ½

 edu.uptymez.com O2 (g)   + edu.uptymez.comN2 (g)  edu.uptymez.com NO (g)                                                                   K c (i) =edu.uptymez.com-31

                                                                                                                 =6.455 x 10-16

Equation (i) + (ii) = (iii)                                                       

Therefore:

K c (iii) = K
c (i) x K c (ii)
                                                    

              = 6.455 x 10-16 x 1.4

              = 9.0369 x 10-16(mol dm-3)1/2 

3. The equilibrium constants for the reactions which have been determined at 878K are as follows:-

i) COO (s) + H2 (g)   edu.uptymez.com  CO(s) + H2O (g)              K1 = 67

ii) COO(s) + CO (g)   edu.uptymez.com      CO(s) + CO2 (g)                        K2 = 490

Using these information, calculate K’s (at the same temperature) for;

iii) CO2 (g) +H2 (g)  edu.uptymez.com CO2 (g) + H2O (g)            K3 =?

And commercially important water gas reaction

iv) CO (g) + H2O(g)   edu.uptymez.com  CO2(g)+ H2(g)                                        K4=?

Reverse (ii)

(ii)CO2 (g) + CO(s)   edu.uptymez.com CO (g) + COO (g)          K2=2.0408 x 10-3

Equation (i) + (ii) = (iii)

 edu.uptymez.comK3 = K 1 x K2

          = 67 x 2.0408 x 10-3

          K3 = 0.1367

To find K4

i) COO (s) +H 2    edu.uptymez.com    CO (s) + H2O (g)                          K1= 67

ii) COO(s) + CO (g)    edu.uptymez.com    CO (s) + CO2 (g)                         K2 = 490

iii) CO2 (g) + H2 (g)      edu.uptymez.com      CO (g) + H2O (g)                                  K3 = 0.1367

iv) CO (g) + H2O (g)   edu.uptymez.com    CO2 (g) + H2 (g)                                       K4 =?

When equation (iii) is reversed, it is equal to equation (iv)

edu.uptymez.com K4 =   edu.uptymez.com

         = edu.uptymez.com

         = 7.315

4. The heterogeneous equilibrium

    i) Fe(s) + H2O    edu.uptymez.com    FeO(s) + H2 (g)                     

    ii) Fe(s) + CO2 (g)  edu.uptymez.com   FeO(s) + CO (g)

Have been studied at 800 0c and 1000 0c.Also the rate (edu.uptymez.com) is constant = 1.81 at 8000c and 2.48 at 1000 0c.

    i) Why are the ratios constant?

    ii) Calculate equilibrium constant at two temperatures of the reaction

    iii)  H2O (g)    + CO (g)         edu.uptymez.com     H2 (g)    +     CO2 (g)      

Answer:

i) The ratios are constant because for any system in equilibrium at a given temperature, the ratio of products of concentration of products to the product of concentration of reactants raised to the point of their mole ratios is constant.

ii) At 800 0C

K p1 =2

K p2 =1.81

K p3 =?

(i)       Fe(s) + H2O(l)  edu.uptymez.com  Fe(s) + H2 (g)                                                 K p (i) =2

Reversed (ii) CO (g) + FeO(s)          edu.uptymez.com       Fe(s) + CO2 (g)              K p (ii) =?

Equation (i) + (ii) = (iii)    

            Kp1 x Kp2=Kp3

            Kp3 = Kp1 x Kp2

                  =2 x 0.55

             Kp3 = 1.1

At 1000 0c

Kp1 = 1.49

K p2 =2.48

            i) Fe(s) + H2O (g)     edu.uptymez.com      FeO(s)   +   H2 (g)                     K p1 =1.49

Reversed     ii)     CO (g) +   FeO(s)    edu.uptymez.com     CO2 (g) + Fe(s)                  Kp2 edu.uptymez.com 

                                                                                                   =0.403

Equation (i) + (ii) = (iii)

           edu.uptymez.comKp3 =kp1 x kp2

                     = 1.49 x 0.403

              Kp3 = 0.6

 1: When 1 mole of ethanoic acid is maintained at 25 0c with 1 mole of ethanol, 1/3 of ethanoic acid remain when equilibrium is attained. How much would have remained if  3/4 of 1 mole of ethanol had been used instead of 1mole at the same temperature.

                      CH3CH2OH + CH3COOH edu.uptymez.com   CH3COOCH2CH3 + H2O

At start:                1mol              1mol                            0                            0

At time:                 1-x                 1-x                              x                           x

At equilibrium:     1edu.uptymez.com1- x = edu.uptymez.com                          edu.uptymez.com                           edu.uptymez.com

                            edu.uptymez.com               edu.uptymez.com

    K c =    edu.uptymez.com 

           = edu.uptymez.com             

             = edu.uptymez.com                  

             Kc = 4

                           CH3CH2OH + CH3COOH         edu.uptymez.com     CH3COOCH2CH3 +H2O

At start;                   1mol                   1mol                          0                           0  

At time                     1-x                       1-x                           x                          x

At equilibrium      (1 x 3/4)-x               1-x                           x                            x

Kcedu.uptymez.com                                      

4 =  edu.uptymez.com  = edu.uptymez.com

       4 edu.uptymez.com=X2

         3- 7x + 4x2 = x2

      3- 7X + 4X2 – x2 =0

        3x2 + 3 – 7x = 0

        3x2 -7x + 3 = 0

         a       b     c

          x =edu.uptymez.com

           x =edu.uptymez.com

            =edu.uptymez.com

        =   edu.uptymez.com

   X=     edu.uptymez.com       or    x = edu.uptymez.com

     = 1.76                    =    0.566

  X cannot be 1.76

           edu.uptymez.comX = 0.566

edu.uptymez.com– 0.566 = 0.184 moles or 23/125 moles

edu.uptymez.com0.184 moles of ethanol would have remained

 2. The equilibrium constant (K c) for the reaction; 2HI (g)  edu.uptymez.com    H2 (g)   +I2 (g) is 0.02 of 400 0 c. If 2 moles of H2 and 1 mole of I2 were mixed together in a 1.0dm3 at 400 0c, how many moles of HI, I2 and H2 would be present at equilibrium.

2HI (g)     edu.uptymez.com    H2 (g)    +   I2 (g)                          K c = 0.02

Reverse the equation above

                          H2 (g)    +   I2 (g)         edu.uptymez.com       2HI (g)                     Kc =  edu.uptymez.com

At start                   2            1                           0                         

At time                 2-x         1-x                  2x                          = edu.uptymez.com   = 50    

At equilibrium     edu.uptymez.com          edu.uptymez.com                  edu.uptymez.com

                K cedu.uptymez.com 

                50 =  edu.uptymez.com 

                50 =   edu.uptymez.com

          50 (2 – 3x + x2) = 4x2

         100 – 150x + 50x2 = 4x2

        100 – 150x +5 0x2 – 4x2 = 0

         100 – 150x + 46x2 = 0

       x=edu.uptymez.com

          =edu.uptymez.com

         =edu.uptymez.com

        x=  edu.uptymez.com                 or      x=  edu.uptymez.com

        x= 2.33                                  x = 0.934

        x cannot be 2.33

               x = 0.934

At equilibrium:

Number of moles of H2 = 2- 0.934

                                         =1.066moles

Number of moles of I2= 1-0.934

                                        =0.066 moles

Number of moles of HI = 2 x 0.934

                                        =1.868 moles

3. The equilibrium constant for the reaction; H2 (g) +Br2 (g)      edu.uptymez.com       2HBr (g) at 1024K is 1.6 x 105. Find the equilibrium pressure of all gases if 10 atm of HBr is introduced into a second container at 1024K.

           H2 + Br2    edu.uptymez.com   2HBr

Share this post on: