ADVANCED MATHEMATICS FORM 6 – PROBABILITY DISTRIBUTION

Share this post on:

Probability nglish-swahili/distribution” target=”_blank”>distribution is the nglish-swahili/distribution” target=”_blank”>distribution which include two main parts.

i) Discrete probability nglish-swahili/distribution” target=”_blank”>distribution function.

ii) Continuous probability nglish-swahili/distribution” target=”_blank”>distribution function.

          I. DISCRETE PROBABILITY DISTRIBUTION FUNCTION

This is the probability function (variable) which assumes separate value E.g x2 =  0, 1, 2, 3, 4…….

It consists of the following important parts;

          i) Mathematical expectation

          ii)  Binomial probability nglish-swahili/distribution” target=”_blank”>distribution

          iii) Poisson probability nglish-swahili/distribution” target=”_blank”>distribution

i) MATHEMATICAL EXPECTATION

          Consider the values

          x1, x2, x3,…….xn with frequencies, f1, f2, f3….. fn. respectively as shown below

X X1 X2 X3 …………………………… xn
f f1 f2 f3 …………………………… fn

edu.uptymez.com

From

edu.uptymez.com

          edu.uptymez.com = edu.uptymez.com       +        edu.uptymez.com   +        edu.uptymez.com + …… + edu.uptymez.com

          edu.uptymez.com = edu.uptymez.com      +        edu.uptymez.com  +        edu.uptymez.com + …… + edu.uptymez.com

       edu.uptymez.com

          Therefore;

edu.uptymez.com

                    edu.uptymez.com

                   E (x) = edu.uptymez.com

          Note:

1.  E (x) = edu.uptymez.com

2.  edu.uptymez.com

          VARIANCE AND STANDARD DEVIATION

Variance

edu.uptymez.com

                           edu.uptymez.com

                 edu.uptymez.com

 Recall

Standard deviation, S.D = edu.uptymez.com

          S.D = edu.uptymez.com

Question

i) Given the probability nglish-swahili/distribution” target=”_blank”>distribution table

x 8 12 16 20 24
P (x) 1/8 1/6 3/8 1/4 1/12

edu.uptymez.com

          Find i) E (x)

                   ii) E (x2)

                   iii) edu.uptymez.com

soln

Consider the nglish-swahili/distribution” target=”_blank”>distribution table below

edu.uptymez.com

edu.uptymez.com

          = 1 + 2 + 6 + 5 + 2

                   E(x) = 16

edu.uptymez.com

          = 8 + 24 + 96 + 100 + 48

          E (x2)= 276

edu.uptymez.com

          = 64(1/8) + 16 (1/16) + 0 (3/8) + 16 (1/4) + 64 (1/12)

          edu.uptymez.com

edu.uptymez.com
= -8 (1/8) + -4 (1/16) + 0 (3/8) + 4 (1/4) + 8 (1/2

          =1 – 2/3 + 1 + 2/3.

                   = 0

          edu.uptymez.com

Note

Always
edu.uptymez.com

Proof

edu.uptymez.com

          = 0 proved

OR

edu.uptymez.com

Prove

2) Given the nglish-swahili/distribution” target=”_blank”>distribution table

X 0 1 2
P (x) K 2k 3k

edu.uptymez.com

     Find  (i) The value of k

               edu.uptymez.com

          Soln

          i) From the given table

                   edu.uptymez.com = 1

                   K + 2k + 3k = 1

                   6k = 1

                   K = 1/6

ii) The expected value

      Consider the nglish-swahili/distribution” target=”_blank”>distribution table below;

X 0 1 2
P (X) 1/6 1/3 1/2
X. PX O 1/3 1

edu.uptymez.com

Hence

          E (x) = edu.uptymez.com 

         = 0 + 1/3 + 1

        = 4/3

The expected value is E (x) = 4/3

              edu.uptymez.com

3)  In tossing a coin twice where x – represents the number of heads, appear, and construct the probability table for random experiment, form the table, calculate the expected value.

          Tossing a coin twice

 edu.uptymez.com
S = {HH, HT, TH, TT}

                   n (s) = 4

Probability nglish-swahili/distribution” target=”_blank”>distribution

X 0 1 2
P (x) ¼ ½ ¼
Xp (x) 0 ½ ½

edu.uptymez.com

                    X = 0

Hence

    edu.uptymez.com 

          = 0 + ½ + ½

          E (x) = 1

The expectation of x is E (x) = 1

4.   A class consists of 8 students. A committee of 4 students is to be selected from the class of which 4 are girls. If x – represent the number of girls, construct the probability table for random variable x and from the table, calculate the expected value.

– Consider the probability nglish-swahili/distribution” target=”_blank”>distribution below;

X 0 1 2 3 4
P (x) 1/70 16/70 36/70 16/70 1/70
Xp (x) 0 16/70 72/70 48/70 4/70

edu.uptymez.com

          For x = 0

  edu.uptymez.com

                   n (s) = 8C4 = 70

                   P (E) = 1/70

          For x = 1

          n (E) = 4C1. 4C3 = 16

          P (B) = 16/70

                   For x = 2

          n (E) =  4C2. 4C2 = 36

          P (B) = edu.uptymez.com = edu.uptymez.com

                   For x = 3

          n (E) = 4C3. 4C1 = 16

          P (E) = edu.uptymez.com = edu.uptymez.com

                   For x = 4

          n (B) = 4C3. 4C0 = 1

                   p (E) = edu.uptymez.com

                   p (E) = 1/70

          Hence

          edu.uptymez.com = edu.uptymez.com

                   edu.uptymez.com

                             = 2

                   The expectation of x is 2 E (x) = 2

05.  Suppose a random variable x takes on value -3, -1, 2 and 5 with respectively probabilityedu.uptymez.comedu.uptymez.comedu.uptymez.com and edu.uptymez.com. Determine the expectation of x

          From the given data

                edu.uptymez.com = 1

edu.uptymez.com

          2x – 3 + x + 1 + x – 1 + x – 2 = 10

                   5x – 5 = 10

                   5x = 15

                   X = 3

Consider the nglish-swahili/distribution” target=”_blank”>distribution table below;

X -3 -1 2 5
P (x) 3/10 4/10 2/10 1/10
Xpx -9/10 -4/10 4/10  

edu.uptymez.com

                   Hence,

                       edu.uptymez.com

                   = -9/10 + -4/10 + 4/10 + 5/10

                             = -4/10

                             E (x) = -0.4

06.  The random variable x has a probability nglish-swahili/distribution” target=”_blank”>distribution of  1/6 + 1/3 + 1/4.

          Find the numerical values of x and y if E (x) = 14/3

          Soln

          From the given nglish-swahili/distribution” target=”_blank”>distribution table

              edu.uptymez.com

          1/6 + 1/3 + 1/4 + x + y = 1

                   x + y = 1 – 1/6 – 1/3 – ¼

                   x + y = ¼ ……..i

                   edu.uptymez.com

          14/3 – 1/3 – 1 – 5/4 = 7x + 11y

                   25/12 = 7x + 11y

          7x + 11y = edu.uptymez.com…..ii

          Solving i and ii as follows;

          11edu.uptymez.com      

                   4x = edu.uptymez.com –edu.uptymez.com

                   X = edu.uptymez.com – edu.uptymez.com

                   X = 1/6

          Also

                   X + y = ¼

                   1/6 + y = ¼

                   Y = ¼ = 1/6

                   Y = 1/12

The numerical values of x and y are such that x = 1/6, y = ½

07. A student estimates his chance of getting A in his subject is 10%, B+ is 40%, B is 35% C is 10%, D is 4% and E is 1%. By obtaining A , the students must get % points for B+, B, C, D  and E, he must get 4, 3, 2, 1 and 0 respectively. Find the student’s expectation and standard deviation.

          Consider the nglish-swahili/distribution” target=”_blank”>distribution below;

  A B+ B C D E
X 5 4 3 2 1 0
P (x) 0.1 0.4 0.35 0.1 0.04 0.01
X P (X) O.5 1.6 1.05 0.2 0.04 0
X2 25 16 9 4 1 0
             

edu.uptymez.com

          From the table

          E (x) = edu.uptymez.com

          = 0.5 + 1.6 + 1.05 + 0.2 + 0.04 + 0

                   = 3.39

The student expectation is E (x) = 3. 39

Also

          S.D = edu.uptymez.com

          edu.uptymez.com

          = 2.5 + 6.4 + 3.15 + 0.4 + 0.04 + 0

                   = 12.49

          S.D = edu.uptymez.com

          S.D = edu.uptymez.com

                   S.D = 0.99895

The standard deviation is 0.99895

Share this post on: