ADVANCED MATHEMATICS FORM 6 – PROBABILITY DISTRIBUTION

Share this post on:

THE EXPECTATION AND VARIANCE OF ANY FUNCTION

          i) E (a) = a

                   Where a = is a constant

          Proof

          E (x) = edu.uptymez.com

        edu.uptymez.com  

                             But                      

                             P (x) = 1

                   E (a) = a (s)

                   E (a) = a proved

ii)       E (ax) = a E (x)

                   Where

                   a = constant

          Proof

          E (x) = edu.uptymez.com

          E (ax) = edu.uptymez.com

 edu.uptymez.com

                   But

                   edu.uptymez.com = E (x)

          E (ax) = a E (x) proved

Where a and b are constant

          Proof – 03

          E (x) = Ex p (x)

          E (ax + b) = edu.uptymez.com

          = edu.uptymez.com

     edu.uptymez.com

                   = a E (x) + b (1)

                   E (ax + b) = a E (x) + b.  Proved

4. Var (x) = 0

          Where a – is constant
          Proof 4
          edu.uptymez.com

                   a2 – (a) 2
                   = a2 – a2
                   = 0 proved

5.   var (ax) = a2 var (x)

          Where

          a – is any constant

          Proof 05
          Var (x) = E (x2) – [E (ax)] 2
          var (ax) = E (ax) 2 – [E (ax) ] 2
                    = E (a2 x2) – [aE (x)] 2
                    = a2 E (x2) – a2 (E (x)] 2
                    = a2 E (x2) – a2 [E (x)] 2
                   = a2 [E (x2) – a2 [E (x)] 2 
                  = a2 [E (x2) – [E (x)] 2]
var (x) = a2 var (x) 
Var (ax + b) = a2var (x)
          Where a and b are constant
Proof
Var (v) – E (ax + b) 2 – [E (ax + b)] 2
Var (ax + b) = E (ax + b) 2 – [E (ax + b)] 2
          Var (ax + b) – E (a2x2 + 2abx + b2) – [a Ex + b) 2
          = E (a2x2) + E (2abx) + E (b2) – [a2 E2 (x) + 2ab E (x) + b2
a2 E (x2) + 2abE (x) + b2 – a2 E2 (x)

8.   For random variable x show that var (x) – E (x2) – [E (x)] 2

          b) The random variable has a probability density function p (x = x) for x = 1, 2, 3. As shown in the table below.         

X 1 2 3
P (x) 0.1 0.6 0.3

edu.uptymez.com

  Find i) E (5x + 3)
          ii) E (x2)
         iii) var (5x + 3)
          Consider the nglish-swahili/distribution” target=”_blank”>distribution table

X 1 2 3
P (x) 0.1 0.6 0.3
Xp (x) 0.1 1.2 0.9
X2 1 4 9
x2 Px 0.1 2.4 2.7

edu.uptymez.com

          ∑(5x + 3) = 5∑(x) + 3

                   But

   edu.uptymez.com

                   = 0.1 + 1.2 + 0.9

                   = 2.2

          edu.uptymez.com = 5 (2.2) + 3

          edu.uptymez.com = 14

ii)
edu.uptymez.com

          = 0.1 + 2.4 + 2.7

          edu.uptymez.com= 5.2

iii) Var (5x + 3) = 52 var x

                   = 25 var (x)

          Var (x) = edu.uptymez.com – [edu.uptymez.com2

          Var (x) = 5.2 – (2.2) 2

          Var (x) = 0.36

Hence

          Var (5x + 3) = 25 (0.36)

          Var (5x + 3) = 9

 Example

The discrete random variable x has probability nglish-swahili/distribution” target=”_blank”>distribution given in the table below;

          Find var (2x + 3)

X 10 20 30
P (x) 01 0.6 0.3

edu.uptymez.com

          From the given table

          Var (2x + 3) = 22 var (x)

                               = 4 var x

                             But

                 edu.uptymez.com

          Distribution table

X 10 20 30
P  (x) 0.1 0.6 0.3
Xp (x) 1 12 9
X2 p (x) 100 240 270
X2 100 400 900

edu.uptymez.com

                 edu.uptymez.com

                             = 1 + 12 + 9

                             = 22

         edu.uptymez.com

                   = 10 + 240 + 270

                    = 520

          Var (x) = 520 – (22) 2

                   Var (x) = 36

          Therefore

          Var (2x + 3) = 4 var (x)

                   = 4 (36) = 144

          Var (2n + 3 = 144

BINOMIAL DISTRIBUTION

This is the nglish-swahili/distribution” target=”_blank”>distribution which consists of two probability values which can be distributed binomially

Properties

It has two probabilities, one is probability of success and one is a probability of failure.
The sum of probability of success p and of failure of q is one
P + q = 1

 The trial must be independent to each other
It consist of n – number of trials of the experiment

Hence;

If p is the probability that an event will happen i.e ( probability  of success) and q is the probability that the event will not happen i.e (probability of failure) where n – is the number of trials

     Then

The probability that an event occurs exactly x time from n – number of trials is given by

          P(x) = ncx px qn –x

Where

n = is the number of trials

q = is the probability of failure

p = is the probability of success

x = is the variable

MEAN AND VOLUME  , edu.uptymez.com         

Recall

edu.uptymez.com

     edu.uptymez.com
edu.uptymez.com = edu.uptymez.comcx p x q n – x

Where

x = 0, 1, 2, 3…..n

 edu.uptymez.com = 0nC0p0qn – 0 + 1nC1p q n- 1

+ 2n C2 p2qn – 2 + 3n C3P3qn- 3

+……..n.nCn pn qn – n

= nC1pqn – 1 + 2n C2p2qn – 2 +

3n C3 p3 qn – 3 +……+nn Cn pnqo

= edu.uptymez.com pq n – 1 + edu.uptymez.com p2qn – 2

= edu.uptymez.com + edu.uptymez.com

 edu.uptymez.com +…….+ npn

= npqn – 1 + n (n – 1) p2qn – 2 +edu.uptymez.com p3qn – 3 + …..npn

= np [qn – 1 + edu.uptymez.com + edu.uptymez.com

= np [qn – 1 + edu.uptymez.com + edu.uptymez.com

          = np (p + q) n -1

                   But

                   P + q = 1

          = np (1) n -1

                = np

       edu.uptymez.com

VARIANCE

edu.uptymez.com

          Taking
edu.uptymez.com

 edu.uptymez.com) = edu.uptymez.com

           = edu.uptymez.com

          edu.uptymez.com) = edu.uptymez.com

           edu.uptymez.com

               edu.uptymez.com

          = On C1p1qn – 1 + 2nC2P2qn – 2 + 6nC3P2qn – 3….. + n (n – 1) nCnpnqn

                = 2nC2p2qn-2  + 6n C3 p3q n – 3 + ….. + n (n – 1) nCn Pnq0

          = edu.uptymez.com p2qn – 2 + edu.uptymez.com +…… + n edu.uptymez.com

          = edu.uptymez.com + edu.uptymez.com + …… + n (n – 1) pn

          = n (n – 1) p2qn – 2 + edu.uptymez.com + n (n – 1) pn

          = n (n – 1) p2 [qn – 2 + edu.uptymez.com ]

                             = n (n – 1) p2 (p + q) n – 2

                             = p (n – 1) p2

          Hence

          ∑(x2)= n (n – 1) p2 + np

                   = np (n – 1) p + 1)

edu.uptymez.com

                   = np (n – 1) p + 1) – (np)2

                   = np [(n – 1) p + 1 – np]

                   = np [np – p + 1 – np]

                   = np [1 – p]

                   = npq

          Var (x) = npq

          STANDARD DEVIATION

          From S.D = edu.uptymez.com

                   S.D = edu.uptymez.com

Note

From p (x) = nCx px qn – x

edu.uptymez.com

ii) edu.uptymez.com = np

iii) var (x) = npq

iv) S.D = edu.uptymez.com

Question

1. A pair coin is tossed 12 times the probability of obtaining head is 0.5, determine mean and standard deviation.      

2. If x is a random variable such than edu.uptymez.com and p = 0.3

          Find the value of n and S.D

3. Suppose that, the rain office records. Show that averages of 5 days in 30 days in June are rainy days. Find the probability that June will have  exactly 3 rainy days by using binomial nglish-swahili/distribution” target=”_blank”>distribution also find S.D.

POISSON DISTRIBUTION

This is the special case of binomial probability nglish-swahili/distribution” target=”_blank”>distribution when the value of n is very large number (n > 50) and when the probability of success, p is very small i.e (p < 0.1)

Properties

The Condition for application of poison probabilities nglish-swahili/distribution” target=”_blank”>distribution are

i) The variable x must be discrete random

ii) The occurrence must be independent

iii) The value of n is always greater than 50 (i.e n) 50) and the probability of  success, p is very small i.e p<0.1

iv)
edu.uptymez.com

      edu.uptymez.com

          Therefore;

                    P (x) = nCx pxqn – x

                   But    p + q = 1

                             q = 1 – p      

edu.uptymez.com 

    = edu.uptymez.com

       = edu.uptymez.com

       = edu.uptymez.com

     = edu.uptymez.com

          But
edu.uptymez.com

  Note;

          (1 + 1/x) x = e

                   X = ∞

MEAN AND VARIANCE

edu.uptymez.com

From   edu.uptymez.com

           = edu.uptymez.com                           

     edu.uptymez.com

Where
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Therefore

edu.uptymez.com

                    = np

Variance

Var (x) = edu.uptymez.com – E2 (x)

Taking

edu.uptymez.com = n edu.uptymez.com

          But

edu.uptymez.com = edu.uptymez.com

          = edu.uptymez.com + edu.uptymez.com

Taking

edu.uptymez.com

edu.uptymez.com

Where;

          i = 2, 3, 4

edu.uptymez.com

          = x2 e –x. ex

          = x2

Hence,

          ∑ x (x – 1)

      ∑ (x2) = ∑x (x – 1) + ∑(x)

edu.uptymez.com

Therefore;

Var (x) = ∑(x2) – ∑2 (x)

        edu.uptymez.com

            Var (x) = np

STANDARD DEVIATION

From

            S.D = edu.uptymez.com

                        = edu.uptymez.com

                   S.D = edu.uptymez.com

Question

1.  Given that probability that an individual is suffering from moralia is 0.001. Determine the probability that out of 2000 individual

i)     Exactly 3 will suffer

ii)   At least 2 will suffer

2. Use poison nglish-swahili/distribution” target=”_blank”>distribution, find the probability that a random sample of 8000 people contain at most 3 NCCR members if an average 1 person in each 1000 members is NCCR member.

3. Random variable x for a poison nglish-swahili/distribution” target=”_blank”>distribution, if

P (x = 1) = 0.01487

P (x = 2) = 0.0446. Find

P (x = 3)

b) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses of an experience shows that 2% of such fuses are defective.

B. CONTINUOUS PROBABILITY DISTRIBUTION

    These are two parts of continuous probability nglish-swahili/distribution” target=”_blank”>distribution, these are

i)    The variable  x must be continuous

ii)   The function is integrable

iii)   The area under the curve are

   = edu.uptymez.com                                                                                             

iv)      For the curve f (x)

i.e f (x) > 0 or f (x) ≥1

RULES
edu.uptymez.com

iii)       P (x < x) = edu.uptymez.com

For instance

       edu.uptymez.com

iv)    P (x > x) = edu.uptymez.com

For instance

P (x > 0.2) = edu.uptymez.com

·           Note

The sufficient conditions for p (x) to be continuous nglish-swahili/distribution” target=”_blank”>distribution are

i)    P (x > o) at (a, b)

ii)    Area under the curve is 1 i.eedu.uptymez.com

Mean variance by probability density function (p.d.f)

edu.uptymez.com

Share this post on: