ADVANCED MATHEMATICS FORM 6 – PROBABILITY DISTRIBUTION

Share this post on:

Variance

From

edu.uptymez.com

 = edu.uptymez.com

 = edu.uptymez.com

 = edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

Therefore

edu.uptymez.com

Example

A continuous random variable x has a probability function given by

 P (x) = edu.uptymez.com

Observation in x indicates that expectation of x is 1, show that a = 1.5 and find value of b

Solution

P (x) = ax – bX2, 0 ≤ x ≤ 2

edu.uptymez.com

Also

    edu.uptymez.com

  = edu.uptymez.com + edu.uptymez.com dx = 1

  = edu.uptymez.com dx = 1

   = edu.uptymez.com – edu.uptymez.com + 0 =1

Note

 edu.uptymez.com

        = edu.uptymez.com – = edu.uptymez.com

         = aedu.uptymez.com – b edu.uptymez.com = 1

      edu.uptymez.com

        Also

    Æ© (x)  = edu.uptymez.com

1 = edu.uptymez.com dx

1 = edu.uptymez.com

edu.uptymez.com
                      6a –8b = 3
2a – 4b = 0
a = 2b
b = a/2
8 (a) – 12 (a/2) = 3
8a – 6a = 3
    2a = 3
     a = 1.5 shown
 
Also
 edu.uptymez.com
b = 0.75

Example

The random variable x denotes that the number of weeks of a certain type of half life of the probability density function f (x) is given by

          f (x) edu.uptymez.com

       Find the expected life

soln

  From

     Æ© (x) = edu.uptymez.com                                                                          

          edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

                     = edu.uptymez.com

                 = edu.uptymez.com dx

                 = 200 edu.uptymez.com dx

                  = 200 [edu.uptymez.com] edu.uptymez.com

                   = 200 [ edu.uptymez.com

                     = 2

          edu.uptymez.com = 2 weeks

        = edu.uptymez.com

edu.uptymez.com

edu.uptymez.com p (x) dx – x

edu.uptymez.com p (x) dx – [ edu.uptymez.com

Therefore

edu.uptymez.com

  Example

A continuous random variable x has a probability function given by

 P (x) = edu.uptymez.com

Observation in x indicates that expectation of x is 1, show that a = 1.5 and find value of b

Soln

P (x) = ax – bedu.uptymez.com, O edu.uptymez.com X edu.uptymez.com

P (x) = 0, –edu.uptymez.com edu.uptymez.com x edu.uptymez.com edu.uptymez.com

Also

 edu.uptymez.com

= edu.uptymez.com + edu.uptymez.com dx = 1

= edu.uptymez.com – edu.uptymez.com + 0 = 1

Note

edu.uptymez.com

           edu.uptymez.com –  edu.uptymez.com

edu.uptymez.com

Also

 edu.uptymez.com = edu.uptymez.com

Example

Given that the probability nglish-swahili/distribution” target=”_blank”>distribution function for random variable x is given by

edu.uptymez.com 

Find the expected value

Solution

edu.uptymez.com 

edu.uptymez.com 

But

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Now

=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

= edu.uptymez.com

Expected value is edu.uptymez.com 

Example

A function

edu.uptymez.com

Find the value of c if it is a probability density function hence calculate

(i)   Mean

(ii)  Variance

Solution

edu.uptymez.com 

edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

(i)Mean

edu.uptymez.com 

= edu.uptymez.com 

= edu.uptymez.com

=edu.uptymez.com 

= edu.uptymez.com

=edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

= 3.074

(ii)  Var(x)

From

edu.uptymez.com

edu.uptymez.com 

 edu.uptymez.com

NORMAL DISTRIBUTION

Normal nglish-swahili/distribution” target=”_blank”>distribution is a continuous nglish-swahili/distribution” target=”_blank”>distribution.

It is derived as the limiting form of binomial nglish-swahili/distribution” target=”_blank”>distribution for the large values of n where p and q are not very large.

edu.uptymez.com 

edu.uptymez.com

             edu.uptymez.com

            edu.uptymez.com

          edu.uptymez.com

edu.uptymez.com 

STANDARD VALUE

For standard value

edu.uptymez.com 

Where

edu.uptymez.com 

X = variable

edu.uptymez.com 

edu.uptymez.com 

 Hence

 edu.uptymez.com

NORMAL CURVE

edu.uptymez.comA frequency diagram can take a variety of different shapes however one particular shape occurs in many circumstances

 edu.uptymez.com

-This kind of diagram is called NORMAL CURVE


PROPERTIES OF NORMAL

DISTRIBUTION CURVE

(i)     The curve is symmetrical about the mean
edu.uptymez.com

(ii)   The value of
edu.uptymez.com

(iii) As edu.uptymez.com

edu.uptymez.com

(iv) The curve never to…….x-……………..

(v)   The curve is maximum at x = ee

(vi)The area under the curve is one re area (A) = 1 square unit

AREA UNDER NORMAL CURVE

By taking

edu.uptymez.com 

The standard normal curve is found.

  •          The total area under the curve is one.
  •           The area under the curve is divided into two equal parts by zero.
  •           The left hand side area is 0.5 and the right hand side area is 0.5

edu.uptymez.com

          The area between the ordinateedu.uptymez.com and any other ordinate can be noted from the TABLE or CALCULATOR

Probability from Normal nglish-swahili/distribution” target=”_blank”>distribution curve.

1.      edu.uptymez.com

 edu.uptymez.com

2.      edu.uptymez.com

 edu.uptymez.com

3.      edu.uptymez.com

edu.uptymez.com 

Note: edu.uptymez.com=0.5 – edu.uptymez.com

4.      edu.uptymez.com

edu.uptymez.com

NOTE: edu.uptymez.com

5.      edu.uptymez.com

edu.uptymez.com 

Note:

edu.uptymez.com 

                       edu.uptymez.com


6.
      edu.uptymez.com

edu.uptymez.com

Note:

 edu.uptymez.com

                           edu.uptymez.com 

7.      edu.uptymez.com

 edu.uptymez.com

Note:

edu.uptymez.com =edu.uptymez.com    

edu.uptymez.com  

8.      edu.uptymez.com

edu.uptymez.com

Note:

edu.uptymez.com 

                           = edu.uptymez.com

                           = 2.edu.uptymez.com

9.      edu.uptymez.com

edu.uptymez.com

edu.uptymez.com  

10.  edu.uptymez.comedu.uptymez.com 

  edu.uptymez.com                   


Note:

edu.uptymez.com 

=edu.uptymez.com

STATISTICAL CALCULATION

(NORMAL DISTRIBUTION)

Consider the set up screen shown below;

Small                      between                large

edu.uptymez.comPC                                QC                     RC                           t

1                                2                               3                           4

edu.uptymez.com

Therefore

edu.uptymez.com 

xQn

where

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com  (standard score)

Question

Find the area under the normal curve in each of the following cases;

(a             (a)  edu.uptymez.com

(b            (
b)
edu.uptymez.com

(c             (c)  edu.uptymez.com

(d            (
d)  edu.uptymez.com

(e             (e)    edu.uptymez.com

(f)       edu.uptymez.com

Solution (a)

edu.uptymez.com

edu.uptymez.com

Share this post on: