ADVANCED MATHEMATICS FORM 6 – PROBABILITY DISTRIBUTION

Share this post on:

NORMAL CURVE

 edu.uptymez.com

edu.uptymez.com 

Area = 0.3849sq unit

(d) edu.uptymez.com

edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

(e) edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com  

= 0.7258

(f) edu.uptymez.com

edu.uptymez.com 

 edu.uptymez.com

edu.uptymez.com 

Question

Determine the normalized variety (→t)p(t) for  x=53 and normal nglish-swahili/distribution” target=”_blank”>distributions

P(t) for the following data  55, 54, 51,55, 53, 53, 54, 52

Solution

edu.uptymez.com 

edu.uptymez.com 

From

edu.uptymez.com 

edu.uptymez.com 

By using scientific calculation

53 – t

edu.uptymez.com 

= -0.28

edu.uptymez.com 

edu.uptymez.com 

= 0.38974

Question

The marks in Mathematics examination are found to have approximately normal nglish-swahili/distribution” target=”_blank”>distribution with mean 56 and standard deviation of 18. Find the standard mark equivalent of a mark 70.

Solution

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

= 0.78

edu.uptymez.com 

= 78%

The standard mark equivalent to a mark of 70 is 78%

Question

Assuming marks are normally distributed with means 100 and standard deviation 15. Calculate the proportional of people with marks between 80 and 118

Solution

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

But

edu.uptymez.com 

edu.uptymez.com 

= -0.8

edu.uptymez.com 

= 1.2

edu.uptymez.comedu.uptymez.com 

edu.uptymez.com  

edu.uptymez.com 

edu.uptymez.com 

The proportional of the people with marks between 88 and 118 is 67.31%

Question

(a    State the properties of normal nglish-swahili/distribution” target=”_blank”>distribution curve

(b   Neema and Rehema received standard score of 0.8 and 0.4 respectively in Mathematics examination of their marks where 88 and 64 respectively. Find mean and standard deviation of examination marks.

edu.uptymez.com 

edu.uptymez.com 

 edu.uptymez.com

edu.uptymez.com 

From

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

THE NORMAL APPROXIMATION (N) TO THE BINOMIAL DISTRIBUTION (B)

Suppose x is the discrete variety distributed as edu.uptymez.com then this can be approximately edu.uptymez.com if and only if

(i)     edu.uptymez.com 

(ii)    P is not too large or too small reedu.uptymez.com

Note:

edu.uptymez.com

   (ii)    

(A normal approximation to binomial nglish-swahili/distribution” target=”_blank”>distribution)

For x considered as edu.uptymez.com

Then

edu.uptymez.com 

          For x considered as approximate by edu.uptymez.com 

Then

edu.uptymez.com 

edu.uptymez.com 

Questions

24: A fair win is tested 400 times; find the probability of obtaining between 190 and 210 heads inclusive.

Solution

Given

N= 400

P = ½

B = (400, ½ )

Also

edu.uptymez.com

From

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com  

   edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Normal curve

edu.uptymez.com

edu.uptymez.com 

                                    edu.uptymez.com

                                    edu.uptymez.com

edu.uptymez.com 

25. Find the probability of obtaining between 4 and 6 head inclusive in 10 tosses of fair coin.

(a) Using the binomial nglish-swahili/distribution” target=”_blank”>distribution

(b) Using the normal nglish-swahili/distribution” target=”_blank”>distribution

Solution

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

= 5

edu.uptymez.com 

edu.uptymez.com 

= 2.5

edu.uptymez.com 

(a) Using the binomial nglish-swahili/distribution” target=”_blank”>distribution

edu.uptymez.com 

=edu.uptymez.com

 edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

= 0.6563

The probability is 0.6563

(b) By using normal nglish-swahili/distribution” target=”_blank”>distribution

re

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.comNormal curve

edu.uptymez.com 

edu.uptymez.com 

                                          edu.uptymez.com 

                                          edu.uptymez.com

             edu.uptymez.com The probability is edu.uptymez.com

 (26) Find the probability of obtaining form 40 to 60 heads in 100 tosses of a fair coin

(27) (a) A binomial experiment consists of “n” trials with a probability of success “p” an each trial.

        (i) Under what condition be used to approximate this binomial nglish-swahili/distribution” target=”_blank”>distribution.

         (ii) Using the conditions named in (i) above, write down mean edu.uptymez.comand standard deviation

     (b) The probability of obtaining head is ½ when a fair coin is tossed 12 times.

           (i) Find the mean   edu.uptymez.com and standard deviation for this experiment

          (ii) Hence or otherwise, approximate using normal nglish-swahili/distribution” target=”_blank”>distribution the probability of getting heads exactly 7 times

edu.uptymez.com

      (a) (i) The condition are

Solution

The condition are

n>50                                                                                                                  

p is not too large or too small

   (0.2 ≤ p≤ 0.8)

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

P(0.29 ≤ Z ≤ 0.87) =edu.uptymez.com

The probability of getting head exactly of 7 times is 0.1938.

28) A machine producing rulers of normal length  30cm is examined  carefully and found to produce rulers whose actual lengths are distributed as N(30,0.0001) Find the probability that a ruler chosen at random has a length between 30cm and 30.01 cm

Soln # 28

N (30,0.0001)

µ=30, edu.uptymez.com

P (30 ≤ × ≤ 30.01)

Z =edu.uptymez.com

Z1= 30-30

0.01

Z1 = 0

Z2 = 30.01-30

=0.01

Z2 = 1

P(0 ≤ z ≤ 1 )edu.uptymez.com

 edu.uptymez.com

P (0 ≤ z ≤ 1) = ɸ (1)

                  = 0.3413

Probability is 0.3413

Share this post on: