ADVANCED MATHEMATICS FORM 5 – TRIGONOMETRY

Share this post on:

Trigonometry is the study of angle measurement and functions that depends on angle.

The fundamental trigonometric ratios are

Sine (sin)

Cosine (Cos)

Tangent (Tan)

Others are cosecant (cosec)

Secant (sec)

Cotangent (cot )

Let θ be the angle in a right angled triangle; then we say

Sin θ

COS θ

Tan θ

And edu.uptymez.com = Cosecant θ = Cosec θ

edu.uptymez.com= secant = sec θ

edu.uptymez.com= Cotangent θ = cot θ

Consider a right angled triangle below

edu.uptymez.com

Sin θ = edu.uptymez.com= edu.uptymez.com………..(i)

cos θ = edu.uptymez.com= edu.uptymez.com……….(ii)

tan θ= edu.uptymez.com= edu.uptymez.com…………(iii)

edu.uptymez.com= cosec θ= edu.uptymez.com= edu.uptymez.com(iv)

edu.uptymez.com= sec θ =edu.uptymez.com = edu.uptymez.com(v)

edu.uptymez.com= cot θ = edu.uptymez.com= edu.uptymez.com(vi)

edu.uptymez.com
But edu.uptymez.com= tanθ

edu.uptymez.com

SPECIAL ANGLES

These are the angles which we can find their trigonometric ratios without mathematical tables or scientific calculators.

The angles are 00, 300, 450, 600, 900, 1800, 2700, 3600.

Finding the trigonometric ratios for special angles.

Case 1: Consider 300 and 600

Here use an equilateral triangle with unit sides

That is

edu.uptymez.com

From edu.uptymez.comAMB (right angled)

edu.uptymez.com

edu.uptymez.com
Then from the fig above

Sin 300 = edu.uptymez.com= edu.uptymez.com

  edu.uptymez.com


Case 2
Consider 450

Here use are square with unit sides (1 unit)

That is

edu.uptymez.com

From edu.uptymez.comABC (right angled)

edu.uptymez.com= edu.uptymez.com+ edu.uptymez.com

edu.uptymez.com= 1² + 1² = 2

edu.uptymez.com= edu.uptymez.com

Then sin 450 = edu.uptymez.com=edu.uptymez.com

Cos 450 = edu.uptymez.com= edu.uptymez.com

Tan 450 = edu.uptymez.com= 1

Trigonometric ratios for 00, 900, 1800 and 2700 and 3600.

Here use a unit circle ‘Discussed also in O level’

A unit circle is a circle with radius (1 unit)

edu.uptymez.com

Suppose p(x,y) is a point in a unit circle

edu.uptymez.com


Generally in a unit circle

X = cosine value of an angle

Y= sine value of an angle

edu.uptymez.com= Tangent of an angle


Angle measurement can be in two ways.

Clockwise direction (-ve angles)

Anticlockwise direction (+ve angles)
From a unit circle we use

X= cosine value of an angle

Y= sine value of an angle

Hence consider angles 00, 900, 1800, 2700, 3600 and their corresponding coordinates in a unit circle.

00edu.uptymez.com means edu.uptymez.com

  edu.uptymez.com

edu.uptymez.com

                  edu.uptymez.com

360°edu.uptymez.commeans edu.uptymez.com

Summary:-

 edu.uptymez.com

The concept of picture and negative angles.

edu.uptymez.com

But sine function and tangent function are odd  functions

Cosine function is an even function


Fig above
From Sin θ =edu.uptymez.com
Sin ( -θ) = –edu.uptymez.com = -sinθ

cos θ = edu.uptymez.com

cos(-θ) = Cos θ

THE IDEA OF QUADRANTS

The idea is discussed in O’Level form IV Basic Mathematics, but let us recall the idea.

edu.uptymez.com

1st Quadrant Angles

The range of the angles is 0°< θ<900

The all trig ratios are positive and are obtained directly from four figure (mathematical figure

edu.uptymez.com

edu.uptymez.com

2nd Quadrant angles

The range of the angles is 900 < θ <1800

edu.uptymez.com

edu.uptymez.com

3rd Quadrant

Ranges from 180°< θ< 270°

edu.uptymez.com

edu.uptymez.com

4th Quadrant

Ranges from 270°<θ<360°

edu.uptymez.com

edu.uptymez.com

 

Eg: Sin 315° = -Sin (360° -315°)

=-edu.uptymez.com

edu.uptymez.com

edu.uptymez.com= -tan (360° – 330°

  = -tan 30°

= edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

=edu.uptymez.com = edu.uptymez.com

edu.uptymez.com

PYTHAGORAS THEOREM (IDENTITY)

Consider a right angled edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

From Pythagoras theorem

edu.uptymez.com+ b² = c²

Dividing by C²

edu.uptymez.com+ edu.uptymez.com= edu.uptymez.com

edu.uptymez.com+ (edu.uptymez.com = 1————–

Substitute equations (i) and (ii) into (*)

Then we get

edu.uptymez.com

Is the Pythagoras Identity.

Dividing equation (1) by edu.uptymez.com

 edu.uptymez.com

 dividing equation (i) by Sin2θ

edu.uptymez.com

Share this post on: