ADVANCED MATHEMATICS FORM 5 – TRIGONOMETRY

Share this post on:

Applications of the double and triple formulae

A.   Proving Identities

Examples: Prove the following identities

(i)                           edu.uptymez.com+ edu.uptymez.com

(ii)                        edu.uptymez.com= edu.uptymez.com

(iii)                      edu.uptymez.com

edu.uptymez.com

Solution(i)

      I.            Proof edu.uptymez.com

Dealing with L.H.S

edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

=cos2A+cos2A-sin2A
=2cos2A-sin2A

edu.uptymez.comedu.uptymez.com

=2 – edu.uptymez.com

=edu.uptymez.com R.H.S

edu.uptymez.comedu.uptymez.com

   II.            Solution(ii)
edu.uptymez.com

Dealing with L.H.S

edu.uptymez.com

edu.uptymez.com

But edu.uptymez.com

edu.uptymez.comedu.uptymez.com

edu.uptymez.comedu.uptymez.comA =edu.uptymez.com R.H.S

edu.uptymez.comedu.uptymez.com

III.       Solution(iii)
edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

=edu.uptymez.com

edu.uptymez.com

Work on the following problems prove the identities

i)                  edu.uptymez.com= edu.uptymez.com

ii)                edu.uptymez.com=edu.uptymez.com

iii)             edu.uptymez.com

iv)              edu.uptymez.com=edu.uptymez.com

v)                edu.uptymez.com+ edu.uptymez.com=2edu.uptymez.com

vi)              edu.uptymez.com=edu.uptymez.com

vii)           edu.uptymez.com= edu.uptymez.com

viii)         edu.uptymez.com= edu.uptymez.com

ix)             edu.uptymez.com= 2edu.uptymez.com

x)                edu.uptymez.com= edu.uptymez.com

xi)             edu.uptymez.com+ edu.uptymez.com=edu.uptymez.com

Warm up with:

i)                  Find  tan edu.uptymez.comwithout calculate mathematical tables

ii)                edu.uptymez.com

HALF ANGLES FORMULAE

From edu.uptymez.com= edu.uptymez.comedu.uptymez.com

Then edu.uptymez.com

= edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com = 1 – edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com – 1 +edu.uptymez.com

edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com

Again from edu.uptymez.com=edu.uptymez.comedu.uptymez.com

But edu.uptymez.com= 1 –edu.uptymez.com

edu.uptymez.com=1 –edu.uptymez.comedu.uptymez.com

edu.uptymez.com= 1 -2edu.uptymez.com

2edu.uptymez.com = 1 –edu.uptymez.com

edu.uptymez.com

For edu.uptymez.com= edu.uptymez.com

edu.uptymez.com=edu.uptymez.com = edu.uptymez.com

edu.uptymez.comedu.uptymez.com

Similarly the formulae can be expressed as

edu.uptymez.com

EQUATION OF THE FORM

a edu.uptymez.com= c

where a, b and c are real constant.

The task here is to solve the equation. The are two ways to solve.

       i.            Using t –fomulae

     ii.            Using R – fomula (or transforming a function aedu.uptymez.com + bedu.uptymez.com= c as a single function)

I.                 USING t- FORMULAE

Consider edu.uptymez.com

Concept of t formulae From edu.uptymez.com= edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

edu.uptymez.com
But edu.uptymez.com= edu.uptymez.com

= edu.uptymez.com

Again edu.uptymez.com= 1 + edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

Let edu.uptymez.com= y

edu.uptymez.com

edu.uptymez.com

from Pythagoras theorem

edu.uptymez.com+edu.uptymez.com = edu.uptymez.com

edu.uptymez.com=edu.uptymez.comedu.uptymez.com

edu.uptymez.com= (1+y2) – edu.uptymez.com²

=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

Then edu.uptymez.com= edu.uptymez.com

Cos2ÆŸ = edu.uptymez.com…………………… (ii)

edu.uptymez.com=edu.uptymez.com = edu.uptymez.com

edu.uptymez.com= edu.uptymez.com………………………..(iii)

From equations (i) (ii) and (iii) it follows that

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

Let t =edu.uptymez.com, then we get

edu.uptymez.com

Equation (1), (2) and (3) are called t-substitution formulae

Solving the equation

edu.uptymez.com+ b edu.uptymez.com= c

Let t =edu.uptymez.com

edu.uptymez.com=edu.uptymez.com , edu.uptymez.com

edu.uptymez.com+ bedu.uptymez.com = c

edu.uptymez.com=c

a – at² + 2bt = c(1 + t²)

a – at² + 2bt = c + ct²

at² + ct² – 2bt + c – a =o

(a + c)t² – 2bt + c –a =o

Quadratic equation

Solve for it

t= edu.uptymez.com

= edu.uptymez.com

=edu.uptymez.com

= edu.uptymez.com

t = edu.uptymez.com

= edu.uptymez.com

t = edu.uptymez.com

but t = edu.uptymez.com

tanedu.uptymez.com = edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com

Example:

Solve for values of θ between 0° and 180° if 2cos θ+ sin θ= 2.5

Solution: let t = tan edu.uptymez.com

2edu.uptymez.com + 3 edu.uptymez.com=2.5

Then edu.uptymez.com= edu.uptymez.com

Sin θ= edu.uptymez.com

2edu.uptymez.com + 3edu.uptymez.com 2.5

edu.uptymez.com+ 3edu.uptymez.com = 2.5

2       -2t² + 6t =2.5edu.uptymez.com

2– 2t² + 6t = 2.5 + 2.5t²

2edu.uptymez.com

4– 4t² + 12t = 5 + 5t²

9t² – 12t + 1 = 0

t= edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com= edu.uptymez.com

= edu.uptymez.com

=edu.uptymez.com

t = edu.uptymez.com= 1.244 or t =edu.uptymez.com

t = 0.00893

case 1:
t =1.244, t= tanedu.uptymez.com tanedu.uptymez.com = 1.244

edu.uptymez.com= tan edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com=51.2° = θ = 51.2 x 2

edu.uptymez.com= 102.4°

case 2:
t = 0.0893

edu.uptymez.com= 0.0893

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com =5.1°, θ = 10.20

edu.uptymez.comθ=edu.uptymez.com

Example 2: solve the equation

5edu.uptymez.com – 2edu.uptymez.com=2 for

     for -1800
edu.uptymez.comx edu.uptymez.com

Using t formula, let t = edu.uptymez.com

edu.uptymez.com

5cosx – 2sin x=2

5edu.uptymez.com=2

edu.uptymez.com=2

5 – 5t² -4t = 2edu.uptymez.com

5 – 5t² – 4t = 2 + 2t²

7t² + 4t -3 =0

7t² + 7t – 3t -3 =0

7t (t + 1) -3(t + 1) =0

(7t – 3) (t + 1)=0

7t – 3 = 0 or t + 1=0

7t =3 t= -1

t = edu.uptymez.com

Case 1.
t=edu.uptymez.com = 0.42857

edu.uptymez.com= 0.42857

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com= 23.2° = 23.2°x2=46.4°

Case2,
t=1, tan edu.uptymez.com= ⁻1

edu.uptymez.com= edu.uptymez.com= edu.uptymez.com

edu.uptymez.com

II.            SOLVING THE EQUATION

acosθedu.uptymez.com = C

R-formula or simply transforming a function acosÆŸedu.uptymez.com bsinÆŸ as a single function.

From acosθedu.uptymez.com bsinθ = c

Consider acosθ + bsinθ – this can be expressed transformed into form

edu.uptymez.com

edu.uptymez.comhere R >O

R is the maximum value of a function (or Amplitude)

edu.uptymez.comis a phase angle and it is an acute angle

Then from acosθ + bsinθ =C

acosθ + bsinθ = Rcos(θ – edu.uptymez.com)

acosθ + bsinθ= Redu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Square equation (i) and (ii) then sum

(Rcosedu.uptymez.com + edu.uptymez.com= a² + b²

R²cos²edu.uptymez.com+ R²sin²edu.uptymez.com = a² + b²

edu.uptymez.com = a² + b²

But edu.uptymez.com+ edu.uptymez.com=1

R².1 = a² + b²

R² =a² + b²

edu.uptymez.com

Then from

acosÆŸ + bsinÆŸ =c = Rcos (ÆŸ – edu.uptymez.com

Rcos(edu.uptymez.com

edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

edu.uptymez.comedu.uptymez.com= edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

edu.uptymez.com

 Rcos edu.uptymez.comcosx = 3cosx

Rcosedu.uptymez.com = 3 —- (i)

-4sinx = Rsinxsinedu.uptymez.com

Sinedu.uptymez.com = 4 —– (ii)
Dividing (ii) by (i), then we get

edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com

edu.uptymez.com(i) and (ii) then sum

edu.uptymez.com+ edu.uptymez.com

= 9 + 16

edu.uptymez.com + Redu.uptymez.com = 25

R²1 =25

edu.uptymez.com

R= 25, R=edu.uptymez.com R=5

But edu.uptymez.com

5edu.uptymez.com

C = 1.5 , edu.uptymez.com= 53.12°

5edu.uptymez.com = 1.5

edu.uptymez.com= edu.uptymez.com

Cos edu.uptymez.com=0.3

X + 53,12°= edu.uptymez.com

X + 53.12° = 72.54°

X = 72.54° – 53.12°

edu.uptymez.comx = 19.42°

Example 2: solve for edu.uptymez.combetween 0° and 180° if

2edu.uptymez.com= 2.5

Solution

2edu.uptymez.com= 2.5

Redu.uptymez.com=2edu.uptymez.com3edu.uptymez.com

Redu.uptymez.com

edu.uptymez.com

Redu.uptymez.com =2edu.uptymez.com

Redu.uptymez.com =2 —(i) and

Redu.uptymez.com

Redu.uptymez.com = 3 ………. (ii)

Dividing (ii) by (i)

edu.uptymez.com= edu.uptymez.com

edu.uptymez.comedu.uptymez.com, edu.uptymez.com

edu.uptymez.comedu.uptymez.com= 56.3°

Squaring (i) and (ii) then add

edu.uptymez.com+ edu.uptymez.com= 2² + 3²

edu.uptymez.com + Redu.uptymez.com = 4 + 9

edu.uptymez.com

R² = 13, R=edu.uptymez.com

Then edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

θ- 56.3°= edu.uptymez.comedu.uptymez.com

θ= edu.uptymez.com

=edu.uptymez.com + 56.3°

edu.uptymez.com= 46.1° + 56.4°= 102.4°

θ= 313.9° + 56.3°= 370.2°

= 370.2° – 360°=10.2°

edu.uptymez.comθ=10.2°,102.4°

Example: 3
solve for x iƒ5edu.uptymez.com – 2sinx =Redu.uptymez.com=2

5edu.uptymez.com – 2edu.uptymez.com= Redu.uptymez.com

edu.uptymez.com

5edu.uptymez.com = Redu.uptymez.com

Redu.uptymez.com = 5 ……………………. (i)

2edu.uptymez.com = Redu.uptymez.comedu.uptymez.com

Redu.uptymez.com = 2 ……………………..(ii)

Dividing (ii) by (i)

edu.uptymez.com= edu.uptymez.com, edu.uptymez.com= edu.uptymez.com= edu.uptymez.com

edu.uptymez.com= edu.uptymez.com= edu.uptymez.com=21.8°

Squaring equations (i) and (ii) the add

edu.uptymez.com2² + 5²

edu.uptymez.com = 29

edu.uptymez.comedu.uptymez.com+edu.uptymez.com = 1

R²x1 =29, R²=29, R = edu.uptymez.com

From Redu.uptymez.com = 2

edu.uptymez.comedu.uptymez.com= 2

edu.uptymez.com= edu.uptymez.com

X + 21.8 = edu.uptymez.com

X + 21.8° = 68.2° , -68.2°

X= 68.2° – 21.8° = 46.40°

Also x + 21.8° = ⁻68.2°

X = ⁻68.2° -21.80 =-90

edu.uptymez.comx = edu.uptymez.com

edu.uptymez.com

NB: The R- formula ( Transformation) can also be done using an auxiliary angle approach; where we substitute constants a and b as functions of sine or cosine.

Thus considering the same problem solving  5edu.uptymez.com  – 2edu.uptymez.com =2

Imagine a triangle

edu.uptymez.com

Using Pythagoras theorem

edu.uptymez.com= edu.uptymez.com+ edu.uptymez.com²

edu.uptymez.com= 5² + 2² = 25 + 4 = 29

edu.uptymez.com= edu.uptymez.com

From the figure above, it follows that

edu.uptymez.com

edu.uptymez.com= edu.uptymez.com, 2 = edu.uptymez.comcosedu.uptymez.com

Then from 5cos x – 2sin x = 2

edu.uptymez.comedu.uptymez.comedu.uptymez.comedu.uptymez.com = 2

edu.uptymez.comedu.uptymez.com= 2

edu.uptymez.comedu.uptymez.com=2

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com– x = edu.uptymez.com

edu.uptymez.com-x = 21.8°

So, the principle angle = 21.8°
edu.uptymez.com

Using the general solution of sin

edu.uptymez.com– x = 21.8°, thus 180°n + edu.uptymez.comnedu.uptymez.com

edu.uptymez.com= 68.2°

X = edu.uptymez.com– 21.8°

X = edu.uptymez.comedu.uptymez.com

X= 68.2° – edu.uptymez.com

n= edu.uptymez.com

find x values according to the limits given in the question

OR imagine a triangle

edu.uptymez.com

Then sinedu.uptymez.com, 2=edu.uptymez.com sinedu.uptymez.com

cosedu.uptymez.com = edu.uptymez.com, 5= edu.uptymez.comcos edu.uptymez.com

from 5cosx – 2edu.uptymez.com

edu.uptymez.comedu.uptymez.comedu.uptymez.com= 2

edu.uptymez.comedu.uptymez.com= 2

edu.uptymez.comedu.uptymez.com=2

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com+ x =edu.uptymez.com=68.2°

Using the general solution of cosine

edu.uptymez.com

edu.uptymez.com+ x =360°n edu.uptymez.com68.2°

X = edu.uptymez.comedu.uptymez.com

edu.uptymez.com= 68.2°

X=edu.uptymez.com – 21.8edu.uptymez.com

n =edu.uptymez.com

Share this post on: