ADVANCED MATHEMATICS FORM 5 – TRIGONOMETRY

Share this post on:

OTHER KIND OF QUESTIONS USING THE TRANSFORMING INTO A SINGLE FUNCTION CONCEPT

Example:1 Express

i)                  4cosx – 5sinx in the form of Rcos(x + edu.uptymez.com

ii)                2sinx + 5cosx in the form of Rsin(x + edu.uptymez.com

Solution(i)

4cos x-5sinx =Rcos(x + edu.uptymez.com

edu.uptymez.com

4cosx = Rcosedu.uptymez.comcosx

Rcosedu.uptymez.com = 4 ……… (i)

5sinx = Rsinedu.uptymez.comsinx

Rsinedu.uptymez.com =5 …………..(ii)

Dividing (ii)by (i)

edu.uptymez.com=edu.uptymez.com = edu.uptymez.com= tan edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com= tan⁻¹edu.uptymez.com

edu.uptymez.com=

Squaring equations (i) and (ii) then add

edu.uptymez.com+ edu.uptymez.com= 4² + 5²

R²cosedu.uptymez.com + R²edu.uptymez.com = 16 + 25

Redu.uptymez.com = 41

R=41, R=edu.uptymez.com

edu.uptymez.com4cos x -5 sin x = edu.uptymez.comcos(x+  )

edu.uptymez.com

Rcosedu.uptymez.comsinx = 2sinx

Rcosedu.uptymez.com =2 …………(i) and

Rcosxsinedu.uptymez.com = 5cosx

Rsinedu.uptymez.com = 5 ………….(ii)

Dividing (ii) by (i)

edu.uptymez.com= edu.uptymez.comedu.uptymez.com= edu.uptymez.com

Tan edu.uptymez.com= , edu.uptymez.com= edu.uptymez.com

edu.uptymez.com

Squaring equations (i) and (ii) then add

edu.uptymez.com+ edu.uptymez.com= 2² + 5²

R²cos²edu.uptymez.com + R² sin²edu.uptymez.com = 4 + 25

Redu.uptymez.com =29

But cos²edu.uptymez.com

R²(1)=29

edu.uptymez.com

Example. Find the maximum value of 24sinx -7cosx and the smallest positive value of x that gives this maximum value.

Solution. 24sin x -7cosx = Rsin(x – edu.uptymez.com

edu.uptymez.com

24sinx = Rcosedu.uptymez.comsinx

Rcosedu.uptymez.com =24, 7cosx = Rsinedu.uptymez.comcosx

Rsinedu.uptymez.com =7 ………(ii)

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com= edu.uptymez.com=edu.uptymez.com

edu.uptymez.com=edu.uptymez.com= 16.26°

Squaring equation (i) and (ii) then add

edu.uptymez.com+ edu.uptymez.com=edu.uptymez.com+edu.uptymez.com

Redu.uptymez.com =625

Redu.uptymez.com =625

R²=625, R=edu.uptymez.com

R =25

24edu.uptymez.com – 7cosx = Rsinedu.uptymez.com

=edu.uptymez.com

=25sin edu.uptymez.com

24sinx – 7cosx = 25sinedu.uptymez.com

f(x)= 25sin(x – 16.26°)

Max value of sine function is when

Sinedu.uptymez.com

edu.uptymez.com

X – 16.26°=90°

X = 90° + 16.26°

X= 106.26°

Hence max value fedu.uptymez.com=y=25 sin 90°

=25

edu.uptymez.comThe maximum value is 25 obtained when x = 106.26°

Note. The maximum values of

edu.uptymez.com

Problems to work on

Using t formula and R –formula solve the following.

edu.uptymez.com

  3.    6sinx + 8cosx =6

 4.    Express 7cosθ+ 24 sinθ in the form of Rcos(10 –edu.uptymez.com

 5.     Solve for θ

3cosθ + 4sinθ =2

6.    5cos2θ– sin 2θ=2

Note: If the question has no limits/boundaries write the answer using the general solution

FACTOR FORMULAE (SUM AND DIFFERENCE FORMULAE)

The concept here is to express the sum or difference of sine and cosine functions as product and vice versa

Refer

Sin(A +B) = sin AcosB + cosAsin B ……….(i)

Sin(A –B) = sinAcosB –cosAsinB ………….(ii)

Cos(A + B) =cosAcosB – sinA sinB …………(iii)

Cos(A+ B) =cosAcosB + sinAsinB ……………(iv)

Add (i) and (ii)

Sin(A + B) + sin(A +B) =2sin AcosB

Let f = A + B ………(i)

Q =A-B …….(ii)

(a)             +(b) 2A = P+Q, A= edu.uptymez.com

(a)             –(b) 2B =P-Q, B=edu.uptymez.com

Therefore sin(A+B)+sin(A-B)=2sinAcosBbecome

edu.uptymez.com

SinP + sinQ= 2sinedu.uptymez.comcosedu.uptymez.com …(1)

Substract(i) –(ii)

Sin(A+B) –sin(A-B) = 2cosA sinB

But P=A+B, Q=A-B

edu.uptymez.com

Add (iii) and (iv)

Cos(A+B)+cos(A-B) = 2cosAcosB

CosP + cosQ = 2cosedu.uptymez.comcosedu.uptymez.com

edu.uptymez.com

Substract (iii) – (iv)

Cos(A + B) –cos(A-B) = -2sinAsin B

edu.uptymez.com

Expressions (1) (2) (3) and ( 4) are called factor formulae

APPLICATIONS OF THE FACTOR FORMULAE

a)    Proving problems

Examples

i)                  edu.uptymez.com= cot 2x

ii)                edu.uptymez.com= cot edu.uptymez.com

iii)             edu.uptymez.com= tanedu.uptymez.com

edu.uptymez.com

              v)        If A, B and C are angles of a triangle prove that

cosA +cosB + cosC -1 = 4sin edu.uptymez.comsinedu.uptymez.comsin edu.uptymez.com

vi)              If A, B and C are angles of a triangle prove that

                     cos2A + cos2B + cos2C + 1 = 4cosAcosBcosC

vii)           edu.uptymez.com=tan A

viii)         edu.uptymez.com=edu.uptymez.com

Solution (i)
edu.uptymez.com(L.H.S)

= edu.uptymez.com

= edu.uptymez.com

But edu.uptymez.comedu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com= edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

Solution(ii)
edu.uptymez.com,

= edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

Solution (iii)

edu.uptymez.com= edu.uptymez.com

= edu.uptymez.comR.H.S

=edu.uptymez.com

Solution(iv)
edu.uptymez.com= 4edu.uptymez.com

      edu.uptymez.com+3A = 2edu.uptymez.com

    =2edu.uptymez.com

=2cos2Acosedu.uptymez.com

=2edu.uptymez.com

edu.uptymez.com+edu.uptymez.com=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=edu.uptymez.com=edu.uptymez.com

=2edu.uptymez.com

Then

=2edu.uptymez.com + 2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=4edu.uptymez.com R.H.S

Solution(V).
A, B, C are angles of a edu.uptymez.com

edu.uptymez.comedu.uptymez.com+ edu.uptymez.com

L.H.S

CosA + cosB + cosC – 1
edu.uptymez.com

 2edu.uptymez.com

=2edu.uptymez.com-2edu.uptymez.com ………….(i)


But A + B + C= 180°

(Degree angle in edu.uptymez.com

A + B = 180°-C

edu.uptymez.com=edu.uptymez.com

90 –edu.uptymez.com = edu.uptymez.com

Apply cos

cosedu.uptymez.com= cosedu.uptymez.com

Cosedu.uptymez.com= edu.uptymez.com

2edu.uptymez.com

But edu.uptymez.com

=1 –edu.uptymez.comedu.uptymez.com

= 1 – 2edu.uptymez.com

Substitute (ii) into (i)

=2edu.uptymez.comcosedu.uptymez.com-2sinedu.uptymez.com

= 2edu.uptymez.com-2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

But edu.uptymez.com=edu.uptymez.com

Using factor formula

2edu.uptymez.com

2edu.uptymez.com

2edu.uptymez.com

2edu.uptymez.com

But edu.uptymez.com

2edu.uptymez.com

2edu.uptymez.com

=edu.uptymez.com

=4edu.uptymez.com

solution(VI).
edu.uptymez.com

= 4edu.uptymez.com

From factor fomulae

=edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

But A + B +C = 180° (edu.uptymez.com )

A +B = 180° -C

Cosedu.uptymez.com

=edu.uptymez.com + edu.uptymez.com

= –edu.uptymez.com+ 0

edu.uptymez.com= –edu.uptymez.com

Substitute into (i)

=-2edu.uptymez.com+edu.uptymez.com + 1

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

=edu.uptymez.com

=2edu.uptymez.com

= -2edu.uptymez.com

= -2edu.uptymez.com

= -2edu.uptymez.com+2edu.uptymez.com

=2edu.uptymez.com

Butedu.uptymez.com= –edu.uptymez.com

2edu.uptymez.com

= -2edu.uptymez.com

= -2edu.uptymez.com

= -2edu.uptymez.com

= -2edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

= -4edu.uptymez.com

=edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

                    edu.uptymez.com

Solution (vi)

edu.uptymez.com

L.H.S changing the products into sin or difference

Numerator: edu.uptymez.com

From  sinP +sinQ=2edu.uptymez.com

edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

 edu.uptymez.comedu.uptymez.com= edu.uptymez.com

Similarly edu.uptymez.com=edu.uptymez.com

Denominator

edu.uptymez.comedu.uptymez.com=edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com

edu.uptymez.com=edu.uptymez.com

=edu.uptymez.com

=edu.uptymez.com RHS

Examples (i) solve for x if

edu.uptymez.com+edu.uptymez.com=edu.uptymez.com for 0°edu.uptymez.com

ii)                edu.uptymez.com

For edu.uptymez.com

iii)             edu.uptymez.com

For edu.uptymez.com

Solution (i)

edu.uptymez.com+ edu.uptymez.com=edu.uptymez.com

Writing using factor formulae

edu.uptymez.com=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

=2edu.uptymez.com

2edu.uptymez.com

2edu.uptymez.com

edu.uptymez.comedu.uptymez.com=0

edu.uptymez.com=0, 2edu.uptymez.com

2edu.uptymez.com=1

edu.uptymez.com=0 edu.uptymez.com= edu.uptymez.com

3x = edu.uptymez.com=0°, 180, 360°

X= edu.uptymez.com540°

=0°,60°,120°, 180°

edu.uptymez.com=edu.uptymez.com= 60°,300°

X= edu.uptymez.com

X=30°, 150°

edu.uptymez.comx=edu.uptymez.com

iv)              edu.uptymez.com=edu.uptymez.com

2edu.uptymez.com=edu.uptymez.com

2edu.uptymez.com

2edu.uptymez.com=edu.uptymez.com

2edu.uptymez.com

edu.uptymez.com

edu.uptymez.com=0, 2edu.uptymez.com0

2x=edu.uptymez.com 2edu.uptymez.com=1

2x=edu.uptymez.com

X=edu.uptymez.com

X=edu.uptymez.com

X= edu.uptymez.com

X=edu.uptymez.com

edu.uptymez.comx=edu.uptymez.com

Questions

1.      Solve for the value of x between 0° and 360° in the question

i)                  edu.uptymez.comedu.uptymez.com= edu.uptymez.com

ii)                edu.uptymez.com+ edu.uptymez.com=0

2.    Prove that

i)                  edu.uptymez.com+edu.uptymez.com°=0

ii)                edu.uptymez.com=edu.uptymez.com

3.    Simplify edu.uptymez.com

4.    Evaluate edu.uptymez.com

5.     Prove that

2edu.uptymez.com=edu.uptymez.com

 If edu.uptymez.com+edu.uptymez.coma and

edu.uptymez.com+edu.uptymez.com=b show that


edu.uptymez.com

7.     Prove that

edu.uptymez.com

8.    Express as a sum or difference

i)                  2edu.uptymez.com

ii)                edu.uptymez.com

iii)             edu.uptymez.comθ

iv)              2edu.uptymez.com

9.    Show without using tables or calculators

i)                  edu.uptymez.com

ii)                2edu.uptymez.com

 

Share this post on: