BAM FORM 6 – TRIGONOMETRY

Share this post on:

 


Compound Angles

The formulae that follow are the ones we refer to as the compound angles

Sin (A + B) = sin A Cos B + Cos A sin B

Sin (A – B) = sin A Cos B – Cos A sin B

Cos (A + B) = Cos A Cos B – sin A sin B

Cos (A – B) = Cos A Cos B + sin A sin B

Solution

Sin (A + B) =  Sin A Cos B + Cos A Sin B

Holder the area of the triangle RST

 edu.uptymez.com                            

Area (ΔRST) = area (ΔRNS) + area (ΔRNT)

 edu.uptymez.comcd sin (A + B) = edu.uptymez.com hc sin B + edu.uptymez.com hd sin B

Multiplied throughout edu.uptymez.com

Sin (A + B) = edu.uptymez.com sin A + edu.uptymez.com sin B

But edu.uptymez.com = cos B and edu.uptymez.com = cos A

            Sin (A + B) = sin A Cos B + Cos A sin B

Cos (A + B)

Apply the cosine rule on the same triangle in figure 8.16

(a + b) 2 = c2 + d2 – 2cd Cos (A + B)

      edu.uptymez.com

                                    = edu.uptymez.com

                                    =  edu.uptymez.com

                                   = edu.uptymez.com

                                    = edu.uptymez.com

                                    = edu.uptymez.com

                                    = edu.uptymez.com  –  edu.uptymez.com

                                    = edu.uptymez.com edu.uptymez.com. edu.uptymez.com

                                    = edu.uptymez.com  = Cos A and edu.uptymez.com = cos B

                                    = edu.uptymez.com = sin A and  edu.uptymez.com = sin B

                        Thus,

                        Cos (A + B) = Cos A Cos B – sin A sin B

            Sin (A – B)

            Consider the area of triangle RST

edu.uptymez.com

                        Area (ΔRNT) = area (ΔRST) – area (ΔRSN)

            edu.uptymez.com cd sin (A –B) = edu.uptymez.com hc sin A – edu.uptymez.com hd sin B

            Multiplied throughout by edu.uptymez.com

            Sin (A – B) =  edu.uptymez.com,  sin A – edu.uptymez.comsin B

            But  edu.uptymez.com = cos B,  edu.uptymez.com = cos A

                      Sin (A – B) = Cos B sin A – Cos A sin B

            Cos (A – B) use the same figure and apply the cosine rule (a – b) 2 = c2 +    d2 – 2cdCos (A – B)

  edu.uptymez.com

                               = edu.uptymez.com

                               = edu.uptymez.com

                               = edu.uptymez.com

                               = edu.uptymez.com

                               = edu.uptymez.com + edu.uptymez.com

                          edu.uptymez.com

            But,  edu.uptymez.com = Cos A, edu.uptymez.com = Cos B, edu.uptymez.com = Sin B

                        Cos (A – B) = Cos A Cos B + Sin A Sin B

Tan (A + B) = edu.uptymez.com

                        = edu.uptymez.com

Divide numerator and denominator by Cos A Cos B
edu.uptymez.com


edu.uptymez.com
Tan (A – B) = edu.uptymez.com

                        = edu.uptymez.com

Divide numerator and denominator by Cos A Cos B

            = edu.uptymez.com                                                                                                                                    

            = edu.uptymez.com

            Tan (A – B) = edu.uptymez.com

Example 1.9

1. Without using tables, evaluate the following

a) Tan (195o)

b) Sin 15o

c) Cos 75o

d) Tan 15o

Solution

a) Tan 195o = tan (135o + 60o) = edu.uptymez.com

                           edu.uptymez.com

b) Sin 15o = sin (45o 30o) = sin 45o Cos 30o – Cos 45o sin 30o

                                            =    edu.uptymez.com x edu.uptymez.com – edu.uptymez.com x edu.uptymez.com

                                             =   edu.uptymez.com – edu.uptymez.com

                                         edu.uptymez.com

c) Cos 70o = Cos (45o + 30o) = Cos 45o Cos 30o – sin 45o sin 30o

            = edu.uptymez.com x edu.uptymez.com – edu.uptymez.com x edu.uptymez.com

            =  edu.uptymez.com – edu.uptymez.com

          edu.uptymez.com 

d) Tan 45o = tan (45o – 30o)           

                        = edu.uptymez.com

edu.uptymez.com


Example 1.10

1. Prove that Cosec θ = Sin θ + Cos θ cot θ

Solution

Take the RHS

            Using cot θ = edu.uptymez.com

            Cosec θ = sin θ + Cos θ x edu.uptymez.com

                        = edu.uptymez.com + edu.uptymez.com

                        = edu.uptymez.com (common denominator)

                        = edu.uptymez.com (sin2 θ + Cos 2θ)

                        = Cosec θ

            RHS = LHS, hence proved

Solution

Take the RHS
edu.uptymez.com                                                                                          

                   =  edu.uptymez.com

                  =  edu.uptymez.com

RHS = LHS, hence proved

Exercise 1.11

1.   Simplify a) sin 4θ – Cos 4 θ

            b) edu.uptymez.com

            c) (Sin θ + cos θ) 2 – 2sin θ cos θ

            d) edu.uptymez.com

2.  Provide the identities

            a) tan θ cot θ sec θ cos θ = 1

            b) edu.uptymez.com = edu.uptymez.com

            c)edu.uptymez.com =  edu.uptymez.com = 2 tan θ sec θ

            d) tan θ + cot θ = Sec θ Cos θ  = 1

            e) (aCos θ  + b sin θ) 2 + (-asin θ + bCos θ) 2 = a2 + b2

            f) (Cosec θ – Cot θ) 2 = edu.uptymez.com

            g)  tan θ + Cot θ = sec θ Cosec θ

            h) (Cos θ – sin θ) 2 + (Cosec θ + sin θ) 2 = 2

             3.  Compute without tables or calculators

            a) sin 15o        b) sin 75o       c) tan 15o       d) tan 75o       c) sin 195o

             4.  Prove the following identities

a) Sin (A +B) + sin (A – B) = 2sin A cos B

            b) Sin (A +B) + sin (A – B) = 2sin A sin B

            c) Cos (A +B) + cos (A – B) = 2cos A cos B

            d) Cos (A +B) + cos (A – B) = 2sin A sin B


5. Simplify the following

            a) Sin (A + 2edu.uptymez.comr)

            b) Cos (A + edu.uptymez.com)

            c) Sin (A + edu.uptymez.com)

            d) Cos (A + 2edu.uptymez.com)


6. Express 6 sin (x + 60o) in the form of p sin x + Q sin x

            7.   If cos A =edu.uptymez.com, tan B = edu.uptymez.com, A and B being acute. Evaluate the following

            a) Cos (A + B)

            b) Tan (A + B)

            c) Sin (A + B)

Double angle formulae

By applying the knowledge of compound angles, it is clear that

(1). sin 2x = sin (x + x)

                = sinx cosx + cosx sinx

         Thus sin 2x = 2sin x cos x

 (2). Cos 2x = cos x cos x – sin x sin x

                        = cos2 x – sin2 x

            From cos 2 x + sin2 x = 1

                        Sin2 x = 1 – cos2 x

                        Cos2 x = cos2 x – (1 + cos2x)

                                    = cos2 x + cos2 x – 1

                         Cos2x =   2cos2x – 1

            But cos2 x = 1 – sin2 x

                        Cos2 x – sin2 x = cos 2x

                        1 – Sin2 x – sin2 x = cos 2x

                        1 – 2 sin2x = cos2x

                        Cos2x = cos2x – sin2 x = 2cos2 x – 1 = 1 – 2sin2 x

            3.  Tan 2x = tan (x + x)

                        = edu.uptymez.com

            Tan 2x = edu.uptymez.com

Exercise 1.12

1.   a) Express sin 3x in terms of cos x

      b) Express cos 3x in terms of cos x

      c) Express tan 3x in terms of tan x

2.   Use double angle formulae to prove that

        a) Sin 4x = 8cos3x sin x – 4cos x sin x

         b) Cos 4x = 8cos4 x – 8 cos2 x + 1

How to write cos 2A and sin 2A in terms of tan A

From double angle formula, it is clear that,

a) Cos 2A = edu.uptymez.com

            From cos2 A + sin2 A = 1

            Cos 2A = edu.uptymez.com

Divide the numerator and denominator by cos 2 A we have

edu.uptymez.com 


b) Similarly, from double angle formula of sine, we see that

            Sin 2A = edu.uptymez.com

                        = edu.uptymez.com

            Dividing numerator and denominator by cos2 A, we have
edu.uptymez.com

                         Sin 2A = edu.uptymez.com

Example 1.13

Solve sin (2edu.uptymez.com + θ) + cos (θ – edu.uptymez.com) = 1, where 0o ≤ θ ≤ 360o

Solution

Cos 2edu.uptymez.com = 1, sin 2edu.uptymez.com= 0, cos edu.uptymez.com = 0 and sin edu.uptymez.com = 1

Expand the left part of the equation i.e sin (2edu.uptymez.com + θ) + cos (θ – edu.uptymez.com)

Sin 2edu.uptymez.comcos θ + cos 2edu.uptymez.comsin θ + cos θ cos edu.uptymez.com + sin θ sin edu.uptymez.com = 1

Sin θ + sin θ = 1

            2sin θ = 1

            Sin θ = edu.uptymez.com

            θ = 30o, 150o

Exercise 1.14

1.   Solve the following trigonometric equations for 0 ≤ θ ≤ 360o

            a) Sin θ – 1 = 0

            b) 2cos θ = edu.uptymez.com

            c) Tan θ = edu.uptymez.com

            d) Tan 3θ = 1

            e) 2cos θ

            f) Cos θ = sin θ

            g) Sin θ = 2

2.  Solve for θ, where 0o ≤ θ ≤ 360o

            a) cos2 θ – 2cos θ = 0

            b) 2sin2 θ + sin θ – 1 = 0

            c) 2cos 2 + 3cos θ + 1 = 0

            d) 4sin2 + 4sin θ = 3

3.  Solve for θ, where 0o ≤ θ ≤ 360o

            a) cos (sin θ) = 1

            b) cos 2θ + sin θ – 1

            c) 2sin 2θ – tan θ = 0

            d) Sin 4θ cos 2θ cos 4θ sin 2θ = edu.uptymez.com

Share this post on: