Compound Angles
The formulae that follow are the ones we refer to as the compound angles
Sin (A + B) = sin A Cos B + Cos A sin B
Sin (A – B) = sin A Cos B – Cos A sin B
Cos (A + B) = Cos A Cos B – sin A sin B
Cos (A – B) = Cos A Cos B + sin A sin B
Solution
Sin (A + B) = Sin A Cos B + Cos A Sin B
Holder the area of the triangle RST
Area (ΔRST) = area (ΔRNS) + area (ΔRNT)
cd sin (A + B) =
hc sin B +
hd sin B
Multiplied throughout
Sin (A + B) = sin A +
sin B
But = cos B and
= cos A
Sin (A + B) = sin A Cos B + Cos A sin B
Cos (A + B)
Apply the cosine rule on the same triangle in figure 8.16
(a + b) 2 = c2 + d2 – 2cd Cos (A + B)
=
=
=
=
=
= –
=
.
= = Cos A and
= cos B
= = sin A and
= sin B
Thus,
Cos (A + B) = Cos A Cos B – sin A sin B
Sin (A – B)
Consider the area of triangle RST
Area (ΔRNT) = area (ΔRST) – area (ΔRSN)
cd sin (A –B) =
hc sin A –
hd sin B
Multiplied throughout by
Sin (A – B) = , sin A –
sin B
But = cos B,
= cos A
Sin (A – B) = Cos B sin A – Cos A sin B
Cos (A – B) use the same figure and apply the cosine rule (a – b) 2 = c2 + d2 – 2cdCos (A – B)
=
=
=
=
= +
But, = Cos A,
= Cos B,
= Sin B
Cos (A – B) = Cos A Cos B + Sin A Sin B
Tan (A + B) =
=
Divide numerator and denominator by Cos A Cos B
Tan (A – B) =
=
Divide numerator and denominator by Cos A Cos B
=
=
∴Tan (A – B) =
Example 1.9
1. Without using tables, evaluate the following
a) Tan (195o)
b) Sin 15o
c) Cos 75o
d) Tan 15o
Solution
a) Tan 195o = tan (135o + 60o) =
b) Sin 15o = sin (45o 30o) = sin 45o Cos 30o – Cos 45o sin 30o
= x
–
x
= –
c) Cos 70o = Cos (45o + 30o) = Cos 45o Cos 30o – sin 45o sin 30o
= x
–
x
= –
d) Tan 45o = tan (45o – 30o)
=
Example 1.10
1. Prove that Cosec θ = Sin θ + Cos θ cot θ
Solution
Take the RHS
Using cot θ =
Cosec θ = sin θ + Cos θ x
= +
= (common denominator)
= (sin2 θ + Cos 2θ)
= Cosec θ
RHS = LHS, hence proved
Solution
Take the RHS
=
=
RHS = LHS, hence proved
Exercise 1.11
1. Simplify a) sin 4θ – Cos 4 θ
b)
c) (Sin θ + cos θ) 2 – 2sin θ cos θ
d)
2. Provide the identities
a) tan θ cot θ sec θ cos θ = 1
b) =
c) =
= 2 tan θ sec θ
d) tan θ + cot θ = Sec θ Cos θ = 1
e) (aCos θ + b sin θ) 2 + (-asin θ + bCos θ) 2 = a2 + b2
f) (Cosec θ – Cot θ) 2 =
g) tan θ + Cot θ = sec θ Cosec θ
h) (Cos θ – sin θ) 2 + (Cosec θ + sin θ) 2 = 2
3. Compute without tables or calculators
a) sin 15o b) sin 75o c) tan 15o d) tan 75o c) sin 195o
4. Prove the following identities
a) Sin (A +B) + sin (A – B) = 2sin A cos B
b) Sin (A +B) + sin (A – B) = 2sin A sin B
c) Cos (A +B) + cos (A – B) = 2cos A cos B
d) Cos (A +B) + cos (A – B) = 2sin A sin B
5. Simplify the following
a) Sin (A + 2r)
b) Cos (A + )
c) Sin (A + )
d) Cos (A + 2)
6. Express 6 sin (x + 60o) in the form of p sin x + Q sin x
7. If cos A =, tan B =
, A and B being acute. Evaluate the following
a) Cos (A + B)
b) Tan (A + B)
c) Sin (A + B)
Double angle formulae
By applying the knowledge of compound angles, it is clear that
(1). sin 2x = sin (x + x)
= sinx cosx + cosx sinx
Thus sin 2x = 2sin x cos x
(2). Cos 2x = cos x cos x – sin x sin x
= cos2 x – sin2 x
From cos 2 x + sin2 x = 1
Sin2 x = 1 – cos2 x
Cos2 x = cos2 x – (1 + cos2x)
= cos2 x + cos2 x – 1
Cos2x = 2cos2x – 1
But cos2 x = 1 – sin2 x
Cos2 x – sin2 x = cos 2x
1 – Sin2 x – sin2 x = cos 2x
1 – 2 sin2x = cos2x
∴Cos2x = cos2x – sin2 x = 2cos2 x – 1 = 1 – 2sin2 x
3. Tan 2x = tan (x + x)
=
Tan 2x =
Exercise 1.12
1. a) Express sin 3x in terms of cos x
b) Express cos 3x in terms of cos x
c) Express tan 3x in terms of tan x
2. Use double angle formulae to prove that
a) Sin 4x = 8cos3x sin x – 4cos x sin x
b) Cos 4x = 8cos4 x – 8 cos2 x + 1
How to write cos 2A and sin 2A in terms of tan A
From double angle formula, it is clear that,
a) Cos 2A =
From cos2 A + sin2 A = 1
Cos 2A =
Divide the numerator and denominator by cos 2 A we have
b) Similarly, from double angle formula of sine, we see that
Sin 2A =
=
Dividing numerator and denominator by cos2 A, we have
Sin 2A =
Example 1.13
Solve sin (2 + θ) + cos (θ –
) = 1, where 0o ≤ θ ≤ 360o
Solution
Cos 2 = 1, sin 2
= 0, cos
= 0 and sin
= 1
Expand the left part of the equation i.e sin (2 + θ) + cos (θ –
)
Sin 2cos θ + cos 2
sin θ + cos θ cos
+ sin θ sin
= 1
Sin θ + sin θ = 1
2sin θ = 1
Sin θ =
θ = 30o, 150o
Exercise 1.14
1. Solve the following trigonometric equations for 0 ≤ θ ≤ 360o
a) Sin θ – 1 = 0
b) 2cos θ =
c) Tan θ =
d) Tan 3θ = 1
e) 2cos θ
f) Cos θ = sin θ
g) Sin θ = 2
2. Solve for θ, where 0o ≤ θ ≤ 360o
a) cos2 θ – 2cos θ = 0
b) 2sin2 θ + sin θ – 1 = 0
c) 2cos 2 + 3cos θ + 1 = 0
d) 4sin2 + 4sin θ = 3
3. Solve for θ, where 0o ≤ θ ≤ 360o
a) cos (sin θ) = 1
b) cos 2θ + sin θ – 1
c) 2sin 2θ – tan θ = 0
d) Sin 4θ cos 2θ cos 4θ sin 2θ =