ADVANCED MATHEMATICS FORM 6 – VECTOR ANALYSIS-1

Share this post on:

LAWS OF VECTORS – ADDITION

A: TRIANGULAR LAW OF VECTORS APPLICATION

Consider the vector diagram below;

edu.uptymez.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

edu.uptymez.com+ edu.uptymez.com – edu.uptymez.com = 0

edu.uptymez.com =  edu.uptymez.com+ edu.uptymez.com

Where r is the resultant vector

B. PARALLELOGRAM LAW OF VECTORS ADDITION

–         Consider the vector  diagram below

 edu.uptymez.com                                                                                                                                                                                                                                                       

edu.uptymez.com

edu.uptymez.com + edu.uptymez.com = edu.uptymez.com…………………………(i)

edu.uptymez.com + edu.uptymez.com  – edu.uptymez.com = 0

edu.uptymez.com + edu.uptymez.com = edu.uptymez.com ……………………………(ii)

From (i) and (ii) above

edu.uptymez.com 

Proved

 (ii) Addition of vectors is associative for any three vectors a, b and c

    Proof

Consider the vector diagram below;

edu.uptymez.com                                                                             

Individual but not considered

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com –edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com ……(i)

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com …………………..(ii)

From (i) and (ii) above

=  edu.uptymez.com

Proved

(iii) For….. of additive identity

For every vector a, we have;

Where;

edu.uptymez.com0                edu.uptymez.com The null (zero) vector

(iv)   Entrance  of addictive reverse

For every vector a we have

edu.uptymez.com 

Where

edu.uptymez.com 

edu.uptymez.com→ is the positive of vector

edu.uptymez.com → is the null vector

ii. SUBTRACTION OF VECTORS

Suppose two dimensional vectors

edu.uptymez.com

Hence

edu.uptymez.com 

= edu.uptymez.com

= edu.uptymez.com

–          Suppose three dimensional vectors

edu.uptymez.com 

edu.uptymez.com 

Hence

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 


Question 1

1.      If edu.uptymez.com

edu.uptymez.com 

(a         Find   (i) edu.uptymez.com

(ii) edu.uptymez.com

        Comment of the results in (a) above

Question 2

Given that

edu.uptymez.com 

edu.uptymez.com 

(i)     Find edu.uptymez.com

(ii)   edu.uptymez.com

(b) Comment on the results in a above

MAGNITUDE OF A VECTOR

– The magnitude of a vector is a measure of length of the vector.

–     – This is denoted by the symbol edu.uptymez.com

(a)   Consider two dimensional vector

edu.uptymez.com

By using Pythagoras theorem

Recall;

edu.uptymez.com 

edu.uptymez.com 

Where

edu.uptymez.com– is the magnitude/ module of the vector r

(b)  Consider three dimensional vector edu.uptymez.com

edu.uptymez.com 

RECTANGULAR RESOLUTION OF A VECTOR

Let: edu.uptymez.com  be three rectangular axes and edu.uptymez.com be three unit vectors parallel to edu.uptymez.com axes respectively.

edu.uptymez.com

Consider edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com+edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com+ edu.uptymez.com

edu.uptymez.com

Also consider the right angled  OFP

      edu.uptymez.com

Using Pythagoras theorem

          i.e a2 + b2 = c2

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Where

edu.uptymez.com= is the magnitude of the vector edu.uptymez.com

Question

Given that

edu.uptymez.com 

edu.uptymez.com 

Find  edu.uptymez.com 

Share this post on: