ADVANCED MATHEMATICS FORM 6 – VECTOR ANALYSIS-1

Share this post on:

DIRECTION RATIO AND DIRECTION COSINES

I.   DIRECTION RATIO

Suppose the vector

edu.uptymez.com

The direction ratio is given by

II.     DIRECTION COSINE

Consider the vector
edu.uptymez.com
edu.uptymez.com

From three dimension plane.

edu.uptymez.com  Makes angles edu.uptymez.com with edu.uptymez.com direction respectively

Hence
edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Therefore the direction cosines are

                      edu.uptymez.com

FACT IN DIRECTION COSINES

– Suppose the vector

edu.uptymez.com   

edu.uptymez.com 

Also the direction cosines are

edu.uptymez.com  

edu.uptymez.com  

edu.uptymez.com  

Hence

edu.uptymez.com +edu.uptymez.com+edu.uptymez.com= 1

  The sum of square  of the direction cosines is one.

Proof

i.e  edu.uptymez.com= xedu.uptymez.com+yedu.uptymez.com+zedu.uptymez.com

    edu.uptymez.com=edu.uptymez.com

  Also

edu.uptymez.com  

edu.uptymez.com  

edu.uptymez.com  —————-(i)

edu.uptymez.com  

edu.uptymez.com  

edu.uptymez.com  ———————-(ii)

edu.uptymez.com  

edu.uptymez.com  

edu.uptymez.com  —————————-(iii)

Adding the equation (i) , (ii) and (iii)

edu.uptymez.com +edu.uptymez.com= edu.uptymez.com + edu.uptymez.com

  =  edu.uptymez.com

But

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com +edu.uptymez.com=edu.uptymez.com  

 UNIT VECTOR
-Is the vector whose magnitude (modules) is one line a unit
-The unit vector in the direction  of vector a is donated  by  read as ” a cap” thus
NOTE:
Any vector can be compressed as the product of it’s magnitude and it’s unit vector
i.e

edu.uptymez.com 

 

QUESTIONS

1.  Find a vector in the direction of vector edu.uptymez.comwhich has a magnitude of 8 units

2.  Find the direction ratio and direction cosines of the vector edu.uptymez.com  where p is the point (2, 3, -6)


THE FORMULA OF DISTANCE BETWEEN TWO POINTS

 Suppose the line joining the points edu.uptymez.com and edu.uptymez.com whose position  vectors are a and b respectively

 edu.uptymez.com
edu.uptymez.com 

  edu.uptymez.com 

HENCE

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com  

edu.uptymez.com=edu.uptymez.com

 edu.uptymez.com=edu.uptymez.com

edu.uptymez.com 

Hence

edu.uptymez.com 

 -Formula  distance between two point

MID POINT OF A LINE

Suppose M is the point which divide the line joining the points edu.uptymez.comand edu.uptymez.com whose position vectors are respectively a and b into two equal parts

i.e

edu.uptymez.com

a = edu.uptymez.com

b = edu.uptymez.com

Hence

edu.uptymez.com 

edu.uptymez.com        edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Therefore

The co-ordinate of M is

edu.uptymez.com 

INTERNAL AND EXTERNAL DIVISION OF A LINE (RATIO THEOREM)

I.     INTERNAL DIVISION OF A LINE

–          Suppose M- is the point which divides the line joining the points edu.uptymez.com  and edu.uptymez.com whose point vectors are a and b respectively internally in the ratio X:ee

 edu.uptymez.com

a = edu.uptymez.com=edu.uptymez.com

b = edu.uptymez.com=edu.uptymez.com

edu.uptymez.com       

edu.uptymez.com 

edu.uptymez.com ……………(i)

edu.uptymez.com       

edu.uptymez.com 

edu.uptymez.com ……………(ii)

By using ratio theorem

edu.uptymez.com

edu.uptymez.com 

By using multiplication

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 


edu.uptymez.com 

The ordinate form of M is

 edu.uptymez.com edu.uptymez.com

Share this post on: