ADVANCED MATHEMATICS FORM 6 – VECTOR ANALYSIS-1

Share this post on:

II.      EXTERNAL DIVISION OF A LINE

Suppose M- is the point which divides the line joining the points edu.uptymez.com  and edu.uptymez.com where position vectors are edu.uptymez.com  respectively , externally is the ration edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com edu.uptymez.com=edu.uptymez.com

edu.uptymez.com       

edu.uptymez.com 

edu.uptymez.com ……………(i)

edu.uptymez.com       

edu.uptymez.com 

edu.uptymez.com ……………(ii)

By using ratio theorem

i.e

edu.uptymez.com 

edu.uptymez.com 

BY CROSSING MULTIPLICATION

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 


edu.uptymez.com 

Therefore

The co-ordinate of M

edu.uptymez.com edu.uptymez.com

External division of a line where edu.uptymez.com

QUESTIONS

       1.Find the length of the line edu.uptymez.com of edu.uptymez.com

       2.  Find the position vector which divides line edu.uptymez.com having point edu.uptymez.com into two equal points.

       3.  A  and B are two points whose vectors are 3edu.uptymez.com + edu.uptymez.com and edu.uptymez.com   respectively. Find the position vector of the points dividing AB.

(a) Internally in the ratio 1:3

(b) Externally in the ratio 3:1

III.    MULTIPLICATION OF A VECTOR

    (A)    SCALAR MULTIPLICATION OF A VECTOR

In this case a vector is multiplied by a certain constant called scalar

Let

edu.uptymez.com 

edu.uptymez.com 


edu.uptymez.com

THEREFORE
edu.uptymez.com
     

  QUESTIONS

  If  edu.uptymez.com 

      edu.uptymez.com

(a)   Find (i) edu.uptymez.com

         (ii)edu.uptymez.com.edu.uptymez.com 

(b)  Comment on results in edu.uptymez.com above

DEFINITION OF DOT PRODUCT

For vectors edu.uptymez.com

 edu.uptymez.com

 Where

edu.uptymez.com is the above between edu.uptymez.com

  edu.uptymez.com                                                                                                                                                                                                                                  

 edu.uptymez.com

 edu.uptymez.com

 edu.uptymez.com edu.uptymez.comcos Q

 
 
edu.uptymez.com edu.uptymez.com cos Q

 

edu.uptymez.com

 

edu.uptymez.com

CHARACTERISTICS

1.      1. PARALLEL VECTOR

Two vector are said to be parallel of the angle between them is zero

 edu.uptymez.com

 Mathematically

From

 edu.uptymez.com edu.uptymez.com= cos Q

 But Q = edu.uptymez.com

edu.uptymez.com edu.uptymez.com= cos Q

  edu.uptymez.com edu.uptymez.com

   edu.uptymez.com edu.uptymez.com

 This is one among the

2.       2. Orthogonal vectors

Two vectors are said to be  orthogonal of the angle between them is 90edu.uptymez.com

 Mathematically
edu.uptymez.com

 

From
edu.uptymez.com

 But Q = 90edu.uptymez.com (orthogonal or perpendicular vector)

  edu.uptymez.com edu.uptymez.com= cos 90

  edu.uptymez.com

This is conditional for the orthogonal vector

Share this post on: