ADVANCED MATHEMATICS FORM 6 – VECTOR ANALYSIS- 2

Share this post on:

06.  TO PROVE THAT AN INSCRIBED ANGLE SUBTENDING A SEMI –   CIRCLE IS A RIGHT ANGLE

 – Consider the vector diagram below.

          Pg. 2 drawing

 edu.uptymez.com

          To prove that

          < Sedu.uptymez.comR = 900

 edu.uptymez.com. edu.uptymez.com = 0

 -b + edu.uptymez.com + – edu.uptymez.com = 0

   – edu.uptymez.com + edu.uptymez.com = edu.uptymez.com

 edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

 edu.uptymez.com + edu.uptymez.com + –edu.uptymez.com= 0

   edu.uptymez.com + edu.uptymez.com = edu.uptymez.com

   edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

        Hence

 edu.uptymez.com. edu.uptymez.com = (edu.uptymez.com + edu.uptymez.com) (edu.uptymez.com – edu.uptymez.com)

edu.uptymez.com. edu.uptymez.com = edu.uptymez.com2 – (edu.uptymez.com2

edu.uptymez.com. edu.uptymez.com = edu.uptymez.com2edu.uptymez.com2

edu.uptymez.com. edu.uptymez.com = edu.uptymez.com2edu.uptymez.com2

   But

 edu.uptymez.com = edu.uptymez.com = radius, r

 edu.uptymez.com. edu.uptymez.com = 0

edu.uptymez.com

    Proved

QUESTION

17.  Find the projection of edu.uptymez.com + 2edu.uptymez.com – 3edu.uptymez.com onto edu.uptymez.com + 2edu.uptymez.com + 2edu.uptymez.com

18.  Find the vector projection of edu.uptymez.com ontoedu.uptymez.com. If edu.uptymez.com = 2edu.uptymez.com +2edu.uptymez.com + edu.uptymez.com and edu.uptymez.com = 3edu.uptymez.com+ edu.uptymez.com + 2edu.uptymez.com

19.  Find the work done of the force of (2i + 3i + k) n s pulling a load (3i + j               k) m

20.  Find the work done of the force of (2i + 3j + k) N is pulling a load a distance of 2m in the direction of 2m in the direction of
edu.uptymez.com = 3edu.uptymez.com + 2edu.uptymez.com + 2edu.uptymez.com        

21.  Find a vector which has magnitude of 14 in the direction of 2edu.uptymez.com + 3edu.uptymez.com + edu.uptymez.com

CROSS (VECTOR) PRODUCT (X or edu.uptymez.com)

  edu.uptymez.com x edu.uptymez.com = edu.uptymez.com sin Ø. edu.uptymez.com

     Where

 edu.uptymez.com– is the unit vector perpendicular to both vector edu.uptymez.com and edu.uptymez.com

   edu.uptymez.com = edu.uptymez.com x edu.uptymez.com

    edu.uptymez.com = edu.uptymez.com

Hence

 edu.uptymez.com x edu.uptymez.com = edu.uptymez.com edu.uptymez.com sin Ø. edu.uptymez.com

1 = edu.uptymez.com

      edu.uptymez.com = edu.uptymez.com edu.uptymez.com sin Ø

          Therefore

                edu.uptymez.com = edu.uptymez.com edu.uptymez.com sin Ø

                             OR

                edu.uptymez.com = edu.uptymez.com edu.uptymez.com sin Ø

          Where

Ø – is the angle between the vector edu.uptymez.com and edu.uptymez.com

          Again

          Suppose the vector

edu.uptymez.com

          Hence

            edu.uptymez.com+ edu.uptymez.com = edu.uptymez.com

             edu.uptymez.com+ edu.uptymez.com = edu.uptymez.com edu.uptymez.com – j edu.uptymez.com+ edu.uptymez.com edu.uptymez.com

          Note

          i)  If you cross two vectors, the product is also the vector.

          ii)  Cross (vector) product uses the knowledge of determinant of 3 x 3   matrix.

          iii)  From the definition.

                   edu.uptymez.com

                     edu.uptymez.com = edu.uptymez.com edu.uptymez.com sin edu.uptymez.com

              Individual

 edu.uptymez.com = (1, 0, 0)

j = (0, 1, 0)

k = (0, 0, 1)

          edu.uptymez.com = (1) (1) (0)

                edu.uptymez.com = 0

                edu.uptymez.com = 0

           Hence

           i x i = j x edu.uptymez.com = edu.uptymez.com x edu.uptymez.com = 0

iv) From the definition

          edu.uptymez.com

          edu.uptymez.com

          edu.uptymez.com

          edu.uptymez.com

          edu.uptymez.com x edu.uptymez.com = k

        Generally

Consider the component vector

edu.uptymez.com                            

         
For anticlockwise (+ve)

                   Pg. 4 drawing

                   edu.uptymez.com

                   i) edu.uptymez.com x edu.uptymez.com = edu.uptymez.com

                   ii) edu.uptymez.com x edu.uptymez.com = edu.uptymez.com

                   iii) edu.uptymez.com x edu.uptymez.com = edu.uptymez.com

For clockwise (-ve)
edu.uptymez.com

 i) edu.uptymez.com x edu.uptymez.com = edu.uptymez.com

                 ii) edu.uptymez.com x edu.uptymez.com = – edu.uptymez.com

                iii) edu.uptymez.com x edu.uptymez.com = – edu.uptymez.com

THEOREM

From the definition

         edu.uptymez.com

          edu.uptymez.com

–               edu.uptymez.com

      edu.uptymez.com

               edu.uptymez.com

            edu.uptymez.com = 0

          Is the condition for collinear (parallel) vectors

a)    edu.uptymez.com ≠ edu.uptymez.com

          = – edu.uptymez.com

Questions

22.  If edu.uptymez.com = 2edu.uptymez.com + 6edu.uptymez.com + 3edu.uptymez.com and edu.uptymez.com= edu.uptymez.com + 2edu.uptymez.com + 2edu.uptymez.com. Find the angle between edu.uptymez.com and edu.uptymez.com

23.  Determine a unit vector perpendicular to edu.uptymez.com = 2edu.uptymez.com – 6edu.uptymez.com – 3edu.uptymez.com and edu.uptymez.com = 4edu.uptymez.com + 3edu.uptymez.com – edu.uptymez.com

24.  If edu.uptymez.com = 2edu.uptymez.com + j + 2k and edu.uptymez.com  = 3edu.uptymez.com + 2edu.uptymez.com + edu.uptymez.com

            Find edu.uptymez.com â‹€edu.uptymez.com

Box product

-This involves both cross and dot product

Supposeedu.uptymez.com. edu.uptymez.com x edu.uptymez.com then start with cross (x) followed by DOT (.)

edu.uptymez.com. edu.uptymez.com x edu.uptymez.com =edu.uptymez.com. edu.uptymez.com xedu.uptymez.com)

-This is sometimes called scalar triple product

Note

-If scalar triple product (box product) of three vectorsedu.uptymez.com.edu.uptymez.com and edu.uptymez.com = 0

-Then the vector edu.uptymez.com, edu.uptymez.com and edu.uptymez.com are said to be COMPLANAR

Question

25.  If edu.uptymez.com = 2edu.uptymez.com + edu.uptymez.com + 2edu.uptymez.com

            edu.uptymez.com = 2edu.uptymez.com + edu.uptymez.com and

            edu.uptymez.com = 3edu.uptymez.com + 2edu.uptymez.com + k

          Find

          a) edu.uptymez.com. edu.uptymez.com x c

          b) edu.uptymez.com xedu.uptymez.com. edu.uptymez.com

APPLICATION OF CROSS PRODUCT

          USED TO PROVE SINE RULE

–      Consider the diagram below

edu.uptymez.com
edu.uptymez.com + edu.uptymez.com + – edu.uptymez.com = 0

             edu.uptymez.com + edu.uptymez.com = edu.uptymez.com
          Cross by edu.uptymez.com on both sides of
                   edu.uptymez.com x edu.uptymez.com + edu.uptymez.com x edu.uptymez.com = edu.uptymez.com x edu.uptymez.com 
                   0 + edu.uptymez.com x edu.uptymez.com = edu.uptymez.com x edu.uptymez.com
                   edu.uptymez.com x edu.uptymez.com + edu.uptymez.com x  edu.uptymez.com
 
          Crossing by edu.uptymez.com on both sides of eqn …. 1 above
                   edu.uptymez.com + edu.uptymez.com= edu.uptymez.com
                   edu.uptymez.com x edu.uptymez.com + edu.uptymez.com + edu.uptymez.com  = edu.uptymez.com x edu.uptymez.com 
                    edu.uptymez.com x edu.uptymez.com + edu.uptymez.com= edu.uptymez.com x edu.uptymez.com
                         edu.uptymez.com x edu.uptymez.com = edu.uptymez.com x c
                         – (edu.uptymez.com x edu.uptymez.com  = edu.uptymez.com x edu.uptymez.com
                   edu.uptymez.com x edu.uptymez.com = – edu.uptymez.com x edu.uptymez.com)
                    edu.uptymez.com x edu.uptymez.com =  edu.uptymez.com x edu.uptymez.com
 
          Equation i and ii as follows
          edu.uptymez.com x edu.uptymez.com = edu.uptymez.com x edu.uptymez.com  = edu.uptymez.com x edu.uptymez.com
          edu.uptymez.com Sinedu.uptymez.com.edu.uptymez.com = edu.uptymez.com sinedu.uptymez.com.edu.uptymez.com = edu.uptymez.com sinedu.uptymez.com.edu.uptymez.com
          edu.uptymez.com Sinedu.uptymez.com = edu.uptymez.com Sinedu.uptymez.com = edu.uptymez.com sin edu.uptymez.com
          Dividing the whole eqn by
          edu.uptymez.com
          edu.uptymez.com = edu.uptymez.com =edu.uptymez.com
          edu.uptymez.com = edu.uptymez.com = edu.uptymez.com 
               Sine rule

Share this post on: