ADVANCED MATHEMATICS FORM 6 – VECTOR ANALYSIS- 2

Share this post on:

COLLINEAR AND COPLANAR VECTORS

1. COLLINEAR VECTOR

These are vectors having the same slope (re direction).

    Pg. 10 drawing

       edu.uptymez.com

      edu.uptymez.com

       edu.uptymez.com = μ edu.uptymez.com

       edu.uptymez.com = t edu.uptymez.com

Where

Æ›, μ and t are scalar

Again edu.uptymez.com and edu.uptymez.com to be collinear edu.uptymez.com x edu.uptymez.com = 0

2. COPLANAR VECTOR

  These are vectors which lie on the same plane

          Eg. Pg. 10 drawing

 edu.uptymez.com

For the vectorsedu.uptymez.com, edu.uptymez.com and edu.uptymez.com to be coplanar

          edu.uptymez.com = 0

          edu.uptymez.com = 0

          edu.uptymez.com = 0

Generally

          edu.uptymez.com =  edu.uptymez.com =  edu.uptymez.com  = 0

Question

31.  Given that

    edu.uptymez.com = 3edu.uptymez.com + 4edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

32.  Find the value are collinear vectors 2edu.uptymez.com – edu.uptymez.com+ edu.uptymez.com, edu.uptymez.com +  2edu.uptymez.com+ 3edu.uptymez.com and 3edu.uptymez.com + edu.uptymez.com+ 5edu.uptymez.com    are coplanar.

33.   Find unit vector in the direction of edu.uptymez.com = 6edu.uptymez.com + 3edu.uptymez.com + edu.uptymez.com and state its length

LINEAR COMBINATION OF VECTORS

Suppose that edu.uptymez.com are vectors andedu.uptymez.com, β and γ are real numbers (sealers). Then a vector edu.uptymez.com = edu.uptymez.com  edu.uptymez.com + β  edu.uptymez.com + γ edu.uptymez.com is a linear combination of vectors edu.uptymez.com

NB

To solve vectors means to put the vectors into linear form

Question

34.  If edu.uptymez.com = edu.uptymez.com + edu.uptymez.com,   edu.uptymez.com = edu.uptymez.com – edu.uptymez.com and edu.uptymez.com = 3edu.uptymez.com – 4edu.uptymez.com resolve edu.uptymez.com into vectors parallel to edu.uptymez.com

35.   Express the vector r = 10edu.uptymez.com – 3edu.uptymez.comedu.uptymez.com as a linear function of edu.uptymez.com given that

          edu.uptymez.com = 2edu.uptymez.com – edu.uptymez.com + edu.uptymez.com

          edu.uptymez.com = 3edu.uptymez.com + 2edu.uptymez.com – edu.uptymez.com    and

          edu.uptymez.com = –edu.uptymez.com + 3edu.uptymez.com – 2edu.uptymez.com


Note: Required to be placed in a right position
Subtopic: Dot Product

Proving cosine rule using dot product
edu.uptymez.com

Consider the triangle ABC above
edu.uptymez.com

 edu.uptymez.com
edu.uptymez.com

Subtopic: Cross Product

Proof of sine rule Consider the ∆ABC with sides A,B and C respectively
edu.uptymez.com

 Construct a line AH which lies on BC and perpendicular.
edu.uptymez.com

      edu.uptymez.com
Equating area
edu.uptymez.com

 

Share this post on: