Form 6 Chemistry – PHYSICAL CHEMISTRY 1.4-CHEMICAL EQUILIBRIUM

Share this post on:

PREDICTION OF DIRECTION AND EXTENT OF CHEMICAL EQUILIBRIUM

At each point in the progress of a reaction, it is possible to formulate the ratio of concentration having the same form as the equilibrium

constant expression .This generalized ratio is called reaction quotient (Q).

For the reaction; edu.uptymez.comthen:- 

QC edu.uptymez.com                                                                                 

Q p =   edu.uptymez.com                                   

QC differs from KC in that the concentration in the expression is not necessarily the equilibrium concentration.

When the values of KC and QC are compared, one can predict the direction of the chemical reaction.

        If Q cedu.uptymez.com K c the system is not at equilibrium, the reactants must further be converted to products to achieve equilibrium therefore net reaction proceeds from left to right.

        If Q c = K c the system is at equilibrium

        If Q c > K c the system is not an equilibrium, the products must converted to reactants to achieve equilibrium therefore a net reaction proceeds from right to left.

Example:

1.Consider the reaction

         edu.uptymez.com

At 2500C, K c = 4.0 x 10-2. If the concentration of Cl2 and PCl3 are both 0.30 M while that of PCl5 is 3.0M, is the system at equilibrium? If not, in which direction does the reaction proceed?

      edu.uptymez.com-2

         Q cedu.uptymez.com                                                                            

                =   edu.uptymez.com                             

  Q c = 0.03        QC ≠ K c,        Q c< K c

edu.uptymez.comThe system is not at equilibrium and the reaction proceeds from left to right

2. At 200k, the K p for the formation of NO is 4 x 10-4

     N2 (g) + O2 (g)           edu.uptymez.com           2NO (g)

If at 200k the partial pressure of N2 is 0.5 atm and that of 02 is 0.25 atm, that of NO is 4.2 x 10-3 atm, decide whether the system is at equilibrium, if not in which direction does the reaction proceed.

  K p = 4.0 x 10-4

 Q p =   edu.uptymez.com                               

       = edu.uptymez.com

  Q p = 1.4112 x 10-4           K p ≠Q p,      K p > Q p

edu.uptymez.comThe system is not at equilibrium, therefore the reaction proceeds from left to right

EQUILIBRIUM CONSTANT WITH DEGREE OF DISSOCIATION (edu.uptymez.com)

-It gives to what extent the reactants are converted to products by dissociation.

-This has to be treated similar to moles.

Example1.  0.01 moles of PCl5was placed in 1L vessel at 210K.It was found to be 52.6% dissociated    into PCl3 and Cl2. Calculate the K c at that temperature.

                          PCl5 (g)          edu.uptymez.com           PCl3 (g) + Cl2 (g)

At start:                      0.01                                0                0

At equilibrium: 0.01-(5.26 x10-3)            5.26 x 10-3     5.26×10-3  

              =edu.uptymez.com 

          = 5.26 x edu.uptymez.com

      PCl5 = 4.74 x 10-3 moles

      PCl3 = 5.26 x 10-3 moles

       Cl2   = 5.26 x 10-3 moles

         K C =    edu.uptymez.com                                 

             =   edu.uptymez.com                                      

       K C = 5.837 x 10-3 moles

2. At 1 atm and 85oC, N2O4 is 50% dissociated, Calculate the equilibrium constant in terms of pressure and calculate the degree of dissociation of the gas at 100 c and 550c.

                         N2O4            edu.uptymez.com              2NO2 (g)      

Start                          1                                        0         

Equilibrium:          1edu.uptymez.com                                     2edu.uptymez.com

  But edu.uptymez.com= 50% = 0.5

                              1-0.5                                   2(0.5)

                               0.5                                      1

nT = 0.5 + 1

= 1.5 moles

edu.uptymez.com =    edu.uptymez.com  x 1                           edu.uptymez.com=   edu.uptymez.com x 1

      = 0.33 moles                            = 0.66moles

   K p =       edu.uptymez.com

           =  edu.uptymez.com

        K p = 1.32

                        N2O4       edu.uptymez.com       2NO2 (g) 

Start:                 1                     0

Equilibrium:    1-edu.uptymez.com                  2edu.uptymez.com

      nT   = (1- edu.uptymez.com) + 2edu.uptymez.com                     

            =1+edu.uptymez.com

    PT = 10atm

   edu.uptymez.com=    edu.uptymez.com   x 10                       edu.uptymez.com = edu.uptymez.com x 10

   K p =   edu.uptymez.com                

       = edu.uptymez.com

    =  edu.uptymez.com x 100 x edu.uptymez.com x edu.uptymez.com

    = edu.uptymez.com

     1.32 =    edu.uptymez.com

  1.32 – 1.32edu.uptymez.com2 = 40edu.uptymez.com2

  1.32 = 40edu.uptymez.com2 + 1.32edu.uptymez.com2

  1.32 = 41.32edu.uptymez.com2

  edu.uptymez.com2 =0.0319

   edu.uptymez.com = 0.1787

edu.uptymez.comDegree of dissociation = 17.87%

 DEGREE OF DISSOCIATION BY DENSITY MEASUREMENT

This method is used for the determination of degree of dissociation of gases in which 1 molecule produces 2 or more molecules.

i.e. PCl5 (g)  edu.uptymez.com  PCl3 (g) + Cl2 (g) 

Thus at constant temperature and pressure, the volume increases. The density at constant pressure decreases.

The degree of dissociation can be calculated from the difference in density between the undissociated gas and that of partially dissociated gas at equilibrium.

If we start with 1 mole of the gas (PCl5) and the degree of dissociation (edu.uptymez.com ), Then

                                    PCl5 (g)    edu.uptymez.com     PCl3 (g) + Cl2 (g)

Moles at equilibrium:  1- edu.uptymez.com                  edu.uptymez.com              edu.uptymez.com

Total moles:   1 – edu.uptymez.com

                      = 1+ edu.uptymez.com

Note:

The density of an ideal gas at constant temperature and pressure is inversely proportional to the number of moles for a given weight.

Hence the ratio of density

edu.uptymez.com edu.uptymez.com

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com            When edu.uptymez.com= Density of gas mixture of equilibrium

                                                edu.uptymez.com= Density of gas before dissociation

                                              edu.uptymez.comDegree of dissociation

Examples1. When PCl5 is heated, it gasifies and dissociates into PCl3 and Cl2.The density of the gas mixture at 2000C is 70.2 Find the degree of dissociation of PCl5 at 2000C

Solution

Observed density, ρ2 =70.2

                               ρ1 =?  

                 V.D = edu.uptymez.com 

                    = edu.uptymez.com 

                     =104.25

               edu.uptymez.com edu.uptymez.com

                    =   edu.uptymez.com

               edu.uptymez.com

                     = 48.5%

2. At 900C, the V.D of N2O4 is 24.8. Calculate the % dissociation into NO2 molecules at this temperature.

  N2O4    edu.uptymez.com    NO2 + NO2

Density at equilibrium,   ρ2 = 24.8

edu.uptymez.com = V.D = edu.uptymez.com = edu.uptymez.com  = 46                                        

edu.uptymez.com?

edu.uptymez.com= edu.uptymez.com

    = edu.uptymez.com

edu.uptymez.com

     = 85.48%

DETERMINATION OF DEGREE OF DISSOCIATION BY MOLECULAR MASS

Molecular masses are proportional at constant temperature and pressure to the density of their gases; therefore we can substitute the molecular masses for the density in the degree of dissociation.

           edu.uptymez.com

            edu.uptymez.com             

Where:-

edu.uptymez.com = Molecular mass of undissociated gas   

edu.uptymez.com  = Average Molecular mass of gases at equilibrium    

Example1:1.588g of N2O4  gives a total pressure of 1atm when partially dissociated at equilibrium in a 500cm3 glass vessel at 250C.What is the degree of dissociation at this temperature?                    

    N2O4    edu.uptymez.com     2NO2

M1 = (14x 2) + (16 x4)

      = 92gmol-1

M2 =?

From PV= nRT, W here n =edu.uptymez.com

M2 = edu.uptymez.com

      = edu.uptymez.com

     = 77.7gmol-1

  edu.uptymez.com

       =   edu.uptymez.com

      =    0.184

    edu.uptymez.com

FACTORS AFFECTING EQUILIBRIUM REACTION

These factors are as follows:-

i)  Temperature

ii)  Concentration

iii)  Pressure

        The first three affects both rates and position of chemical equilibrium (i, ii and iii)

        The other three affects the rate of chemical equilibrium

 1) Temperature

a) Increasing the temperature, increases the rate of reaction because usually at high temperature the collision factor increases also the number

of molecules having necessary activation energy is large.

b)  Effect on the position of equilibrium is explained by using Le-Chateliers principle which states that “when a system at equilibrium is

subjected to a change, processes occur which tend to counteract the change” (If a system in equilibrium is disturbed (change in temperature and pressure) the system adjusts itself so as to oppose the disturbance).

Consider the reaction

2SO2 (g) + O2 (g)   edu.uptymez.com    2SO3 (g) + Heat (negative)

               edu.uptymez.com

   If temperature is increased in the system, the equilibrium moves in a direction where there is a absorption of heat and if the temperature is decreased  in the system, the equilibrium moves in a direction where there is release of heat.

Effect of temperature, on the position of equilibrium can be explored by Vant Hoff`s law of
mobile chemical equilibrium which states that

“For any system in equilibrium high temperature favours endothermic reactions and low temperature favours exothermic reactions.

The way in which equilibrium constant changes with temperature is found both theoretically and experimentally governed by the following

relationship;

    edu.uptymez.com  =  edu.uptymez.com               

 âˆ† Hm = change in molar heat

  K = Equilibrium constant

On intergrating the equation above;

       edu.uptymez.com                                    

   Where c = constant

If K1 and K2 are equilibrium constants corresponding to T1 and T2 ,the constant term can be eliminated from the equation above so as to give Vant Hoff`s equation i.e.

lnK1edu.uptymez.com …………………. (1)

lnK2 = edu.uptymez.com…………………. (2)

Subtracting equation (1) from (2) i.e.

lnK2 – lnK1 =edu.uptymez.com)edu.uptymez.com)

edu.uptymez.com edu.uptymez.com……………………1

But 1 ln = 2.303log

edu.uptymez.com = edu.uptymez.com edu.uptymez.com……………………2

But edu.uptymez.com = edu.uptymez.com

      edu.uptymez.com edu.uptymez.com =edu.uptymez.com edu.uptymez.com……………………3

  Where 1 = 2 = 3

Example1: For the reaction;

N2O4   edu.uptymez.com   2NO2      âˆ†H = 61.5KJ mol-1

                               KP = 0.113 at 298K

i) What is the value of KP at 00C?

ii) At what temperature will KP =1?

Answers:

i) From edu.uptymez.com = edu.uptymez.com edu.uptymez.com

KP2 = 0.113

KP1 =?

T 1 = 273K

T 2 = 298K

∆Hm = 61.5Kjmol-1

R=8.314

 edu.uptymez.comedu.uptymez.com   edu.uptymez.com

 edu.uptymez.com= 3211.9676 (3.0729896 x 10-4)

  edu.uptymez.com = 0.987

To remove ‘log’ make 100.987

  edu.uptymez.com

     edu.uptymez.com

      edu.uptymez.com

ii) From logedu.uptymez.com =edu.uptymez.com edu.uptymez.com

KP2 = 0.113                 T1 =?

KP1 = 1                         T2=298K

∆Hm = 61.5KJ mol-1

R = 8.314

edu.uptymez.com=edu.uptymez.com  edu.uptymez.com

-0.9469 = 3211.9676  edu.uptymez.com

 -2.948 x 10-4 = edu.uptymez.com

 -0.0878T 1 = 298 – T 1

  -0.0878T 1 + T1 =298

   0.912T1 = 298

    T1 = 326.7k

Share this post on: