BAM FORM 5 – STATISTICS

Share this post on:

THE MEAN BY USING CODING METHOD

PROCEDURES
·        Choose the convenient value of x nearby the middle of the range

      ·        Subtract it from every value of x

      ·        Divide by the class size to get the coded value of x i.e. x/c

      ·        Find the  product of xc and f  i.e. xc f

      ·        Find the mean of xc  i.e. edu.uptymez.com

      ·        Find the true mean

Example

 Calculate the mean of the following nglish-swahili/distribution” target=”_blank”>distribution by using coding method

SCORES 55-59 60-64 65-69 70-74 75-79 80-84
F 5 7 16 6 4 2

 

edu.uptymez.com
SCORES x f d=x-A xc=d/c xcf
55-59 57 5 -10 -2 -10
60-64 62 7 -5 -5 -7
65-69 67 16 0 0 0
70-74 72 6 5 1 6
75-79 77 4 10 2 8
80-84 82 2 15 3 6
    N=40     edu.uptymez.com=3

 

edu.uptymez.com

A = 67

edu.uptymez.com = edu.uptymez.com = edu.uptymez.com = 0.075

     = 0.075

But edu.uptymez.com – A = edu.uptymez.com.c

        edu.uptymez.com = edu.uptymez.com.c + A

           = 0.075 x 5 + 67

           = 67.375

EXERCISE

1. By using the coding method calculate the weight of the following population

WEIGHT(KG 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79
F 2 5 6 8 6 5 3 2

 

edu.uptymez.com
WEIGHT(KG x f d=x-A xc=d/c xcf
40-44 42 2 -15 -3 -6
45-49 47 5 -10 -2 -10
50-54 52 6 -5 -1 -6
55-59 57 8 0 0 0
60-64 62 6 5 1 6
65-69 67 5 10 2 10
70-74 72 3 15 3 9
75-79 77 2 20 4 8
  N=37       edu.uptymez.com=11

 

edu.uptymez.com

A = 57

edu.uptymez.com= edu.uptymez.com

      = edu.uptymez.com

      = 0.297

BUT edu.uptymez.com– A = edu.uptymez.com . c

        edu.uptymez.com = edu.uptymez.com .c + A

        edu.uptymez.com = 0.297 x 5 + 57

           = 58.486

      2. Find the mean of the following frequency nglish-swahili/distribution” target=”_blank”>distribution by using coding method

Class interval 85-89 90-94 95-99 100-104 105-109 110-114
frequency 4 14 32 28 17 5

 

edu.uptymez.com
Class interval x f d=x-A xc=d/c xcf
85-89 87 4 -10 -2 -8
90-94 92 14 -5 -1 -14
95-99 97 32 0 0 0
100-104 102 28 5 1 28
105-109 107 17 10 2 34
110-114 112 5 15 3 15
    N=100     edu.uptymez.comf =55

 

edu.uptymez.com

A = 97

edu.uptymez.com=edu.uptymez.com

     = edu.uptymez.com

     = 0.55

But

edu.uptymez.com – A = edu.uptymez.com . c

edu.uptymez.com = edu.uptymez.com .c + A

edu.uptymez.com = 0.55 x 5 + 97

   = 2.75 + 97

  = 99.75

QUARTILES AND PERCENTILES

QUARTILES

Divides the nglish-swahili/distribution” target=”_blank”>distribution into four (4) equal parts

edu.uptymez.com

NOTE

                         i.            The value which corresponds to N/4 is called the lower quartile i.e. Q4)

                        ii.            The value which corresponds to N/2 is called the median  i.e.(Q2)

                       iii.            The value which corresponds to 3N/4 is called the upper Quartile i.e.(Q3)

                       iv.            The difference between the upper quartile and the lower quartile is known as the inter quartile range

Example

From the following nglish-swahili/distribution” target=”_blank”>distribution find

    i) Upper quartile

   ii) Lower quartile

   iii) Inter quartile range

30,25,66,19,44,45,52,53,37,65,57,44,33,80,76,71,40,50,38,33

Solution

N=20

3/4N=     edu.uptymez.com x 20 = 15

Arranging the value in ascending order

19,25.30,33,33,37,38,40,44,44,45,50,52,53,57,65,66,71,76,80

edu.uptymez.comThe fifteenth value is 57 i.e. the upper quartile is 57

ii) Lower quartile

N/4=20/4=5

edu.uptymez.comThe lower quartile is 33

iii) Inter quartile range

(Upper quartile-lower quartile)

QR =Qu – QL

= 57 – 33

= 24

QUARTILE FOR GROUPED DATA

·        Lower quartile (QL)

This is given by

QL = L (L) + edu.uptymez.com c

Where

L (L) =lower boundary of the lower quartile class

N = total number of frequency

na =  total frequency below lower quartile class

nc = frequency in the lower quartile class

C = Class size

·        UPPER QUARTILE (Qu)

This is given by

edu.uptymez.com

Where

Lu = is the lower boundary of upper quartile class

nu = frequency in the upper quartile class

Example

For the given data below

      i) Lower   ii) upper quartile   iii) inter Quartile range

SCORES 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
F 1 2 7 21 27 22 17 2 1

 

edu.uptymez.com

Solution

       i) Lower quartile

            QL = Lu edu.uptymez.com c

N=100

N/4=25

Lower quartile class is 4.50

LL=40.5, na=10, nl=21,    c=10

QL = 40.5 + edu.uptymez.com 10

QL =40.5+ edu.uptymez.com

QL=40.5+7.14

 QL = 47.64

    ii) Upper quartile (Qu)

edu.uptymez.com

Lu=60.5, na =58,  nu=22,   c=10

3/4n=3/4 x 100

Qu=60.5+ edu.uptymez.com10

Qu=60.5+ (0.773×10)

Qu=60.5+7.727

Qu=68.227

     iii) Inter-quartile range

QR = QU – QL

     = 68.227- 47.64 = 20.59

PERCENTILES FOR GROUPED DATA

Percentiles

Divided the nglish-swahili/distribution” target=”_blank”>distribution into hundred (100) equal parts iep1 p2, p3, P4, P5 ……………………….p100

Note

i) The value  which corresponds to edu.uptymez.com  is called lower percentile

ii) The value which corresponds toedu.uptymez.com is called the median

iii) The value which corresponds edu.uptymez.comis called upper percentile

 LOWER PERCENTILE (P1)

This is given by:
edu.uptymez.com

 Where

Lp1= Lower boundary of the lower percentile class
N= Total number of frequency
na=Total frequency below lower percentile class
  nl= Frequency in the percentile class
c= Class size

Also the upper percentile class is given by


edu.uptymez.com

 Where
L99= Lower boundary of the upper percentile class
N= Total number of frequency
na=Total frequency below upper percentile class
nw= Frequency in the upper percentile class
c= Class size

 Measures of  dispersion

The measures of dispersion of a nglish-swahili/distribution” target=”_blank”>distribution are

i)   Range

ii)  Variance

iii)Standard deviation

THE RANGE

Is the simplest measure of dispersion. The range of a set of data is the difference between the highest and the lowest value

Example

Find the range of the following marks 36, 71, 25 ,93 ,84 ,46, 60, 17, 23,59

Solution

 The lowest mark is 17

 The highest mark 93

 The range is 93- 17= 76

Questions

 Describe the following terms with illustrations using the data set

 3, 5, 2, 9, 2

(a)    Range

(b)   Mode

Variance and standard deviation

 The standard deviation describe dispersion in term of amount or size by which measurement differ or

 deviate from their mean value. The mean of the squares or the deviation is called VARIANCE denote byedu.uptymez.com  that is
edu.uptymez.com

The square root of variance gives by the standard deviation (STD) denoted byedu.uptymez.com That is

 edu.uptymez.com

 In case of frequency nglish-swahili/distribution” target=”_blank”>distribution
The variance for the grouped data is given by
edu.uptymez.com              for i =  1, 2, 3……..n

The Standard deviation for the grouped data is given by

 edu.uptymez.com for i =  1, 2, 3……..n

It can be also shown that

edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Similarly edu.uptymez.commay be written as

edu.uptymez.com

edu.uptymez.com

The corresponding formulae for the standard deviations are

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Where
f is the frequency of each particular value

N is the total number of all frequencies

x is any value in a given set of data is the mean of the of the value
edu.uptymez.com

ExampleEvaluate the variance and standard deviation of the following frequency nglish-swahili/distribution” target=”_blank”>distribution:

Intervals 1-4 5-8 9-12 13-16 17-20
Frequency 3 5 9 12 7

 

edu.uptymez.com

Solution

To contract the more detailed frequency nglish-swahili/distribution” target=”_blank”>distribution table
edu.uptymez.com


Mean, edu.uptymez.com
edu.uptymez.com

Variance, var(x)=edu.uptymez.com

Standard deviation, STD x=edu.uptymez.com

edu.uptymez.com

Exercise

1.       Calculate the variance and standard deviation of the following nglish-swahili/distribution” target=”_blank”>distribution

Value 2 6 10 14 18
Frequency 14 25 19 7 3

 

edu.uptymez.com

2 . Calculate the variance and standard deviation of the following nglish-swahili/distribution” target=”_blank”>distribution

Value 1 2 3 4 5
Frequency 12 8 4 3 1

 

edu.uptymez.com

3 The frequency nglish-swahili/distribution” target=”_blank”>distribution table for Msolwa secondary school ground club is a given as

Matches 50-100 100-150 150-200 200-250 250-300 300-350
Months 5 8 9 14 14 10

 

edu.uptymez.com

Find the variance and standard deviation

Application of statistics

i)                    Economics

ii)                   Business

iii)                 Agriculture

iv)                 Health

v)                  Education

vi)                 Sport and games

edu.uptymez.com

Share this post on: